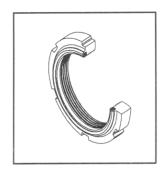


Shur-Lok **Bearing Locknuts Catalog**

TABLE OF CONTENTS


General Intro	oduction	1-2
		STA-LOK POSITIVE LOCKING SYSTEM
		Bearing Retaining Features And Benefits3
SL60N SL60W SL61N SL61W SL61WT	Lockwasher, Locknut, Sta Lockwasher Detente Rer Lockwasher	n-lok, Bearing Retaining 4 - 5 Sta-Lok Bearing Retaining 6 - 7 n-Lok, Bearing Retaining 8-10 Sta-Lok Bearing Retaining 11-13 moval Provision Sta-Lok Bearing Retaining 14-15 noval Provision
		Snap-In Features And Benefits
SL7080	Locknut And	Lockwasher, Sta-Lok Snap-In
		Cotter Key Lock Features and Benefits
SL7458	Locknut, Sta	-Lok, Precise Adjusting


Keyway Lock Features And Benefits 21

PREVAILING TORQUE LOCKNUTS

Face Wrenching Features and Benefits 25

Segmented Lock Features and Benefits 38

International Specifications for Steels Appendix B

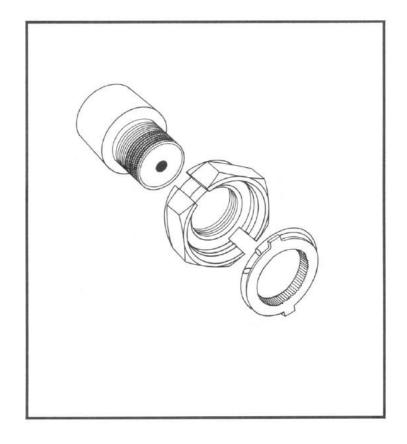
TSB001 STA-LOK POSITIVE LOCKING SYSTEM Technical Sales Bulletin

STA-LOK POSITIVE LOCKING SYSTEM Technical Sales Bulletin Contact Shur-Lok For a Copy

INTRODUCTION

Shur-Lok provides a variety of locknut types to meet almost any design challenge. Our Locknuts are used for many different applications including turbo-machinery, gearboxes, transmissions, aircraft structure, aircraft landing gear and high vibration helicopter applications.

Whether your design requirements include high vibration, high RPM, superior strength, reduced weight, high temperature or corrosion protection, Shur-Lok can offer a design to meet your needs. Our Product Engineering Group can assist you with your special or custom designs, or you can select from our existing product series. Sizes ranging from .250 to 8.00 inches in diameter can be provided. Metric thread equivalents are also available.

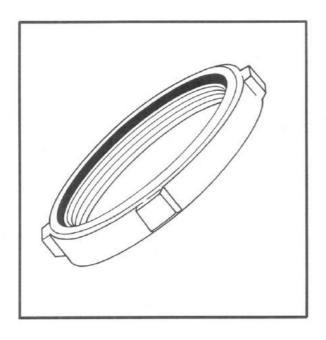

Locknuts can be produced from almost any commercially available materials. These include Alloys that offer weight, corrosion, strength and temperature benefits. Commonly used materials are Titanium, A286 CRES, Inconel, 300 series stainless steel and all alloy carbon steels.

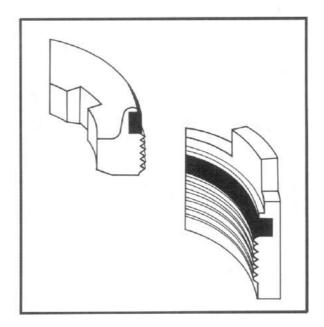
The 2 basic locknut types offered by Shur-Lok are *positive lock* and *prevailing torque* locknuts.

Positive lock locknuts, compromise a family of parts that are designed to prevent any unthreading or backing off of the nut by utilizing a mechanical or positive stop. In order for a positively locked locknut to lose preload or locking function when installed, requires the shearing of metal.

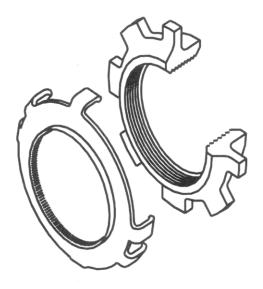
Installation and removal of this type of locknut, requires a secondary locking component, such as a lockwasher.

The Shur-Lok positive locking systems provide the most adaptable and balanced positive locking systems available. The foundation of this family of parts, is our STA-LOK system. The STA-LOK system uses extremely small serrations in its design to provide precise torque setting of the locknut this system has been the design standard, proven through out the years, in the rigorous operating conditions of helicopter gearboxes, engine assemblies and aircraft landing gear.




Prevailing torque locknuts are exactly what the term implies. Unlike a positive lock, prevailing torque locknuts provide a frictional force or prevailing torque between the nut and the shaft. This frictional force is created through interference between the nut locking feature and the shaft thread. The resulting prevailing torque, resists unlocking of the threaded joint. In the event that an "untightening" force acts on the seated nut that is higher than the nut's prevailing torque and seating torque, the nut will loosen only until the force is removed. When the force is removed, the locknut's frictional or prevailing torque will prevent the nut from further coming off the shaft or the bolt. This example describes prevailing torque function for an internally threaded locknut. An externally threaded locknut functions in an identical manner, with the exception that it is typically threaded into a housing or an internal shaft thread.

This brochure illustrates standard series of both positive and prevailing torque locknuts. We encourage the use of standard series when possible as this eliminates the lead time associated with custom designs. In the event that your application cannot be satisfied by a standard series, Shur-Lok welcomes the submittal of your specific design criteria. Shur-Lok has a comprehensive network of technical sales people that are available to work with you on your custom design.


Locknut Styles available within the Categories of Prevailing and Positive Lock Types:

Various styles and designs of locknuts are available within the categories of Prevailing Torque and Positive Lock. Those designs are listed below. See indicated pages for a detailed description of applications and benefits.

STA-LOK, BEARING, RETAINING

FEATURES AND BENEFITS

- Positive mechanical lock that is not dependent on lubricants or plating for repeatability
- Achieves precise preload serrations provide adjustment that eliminates back-off or overtorque.
- Maintains fatigue strength at reduced weight. External serrations in the nonload carryingportion of the thread eliminates keyways allowing reduction of shaft wall thickness or diameter.
- Key way stress concentrations are eliminated.
- Internal serrations of washer mates with serrated shaft
- SL60 series nut and washer supplied as separate components under NAS 1493 and NAS 1443 part numbers.
- SL61 series washer incorporates an additional removal feature.

SHAFT/BOLT SERRATIONS

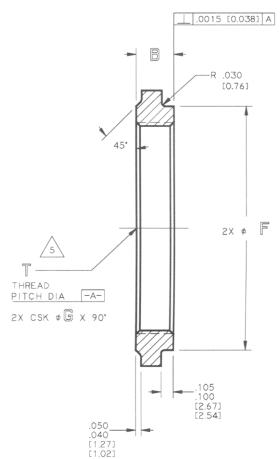
Broaching serrations on shaft/bolt is required. For installation and removal of locknuts and lockwashers refer to Technical Sales Bulletin - TSB 0001.

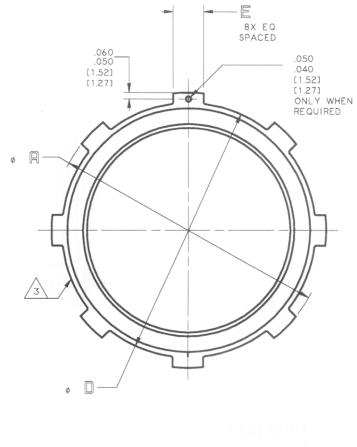
APPLICATIONS

- Interference type where there is high RPM and/or load reversals.
- Where achieving precise preload is critical and existing nuts cannot provide adequate adjustment.
- Where vibration is present.
- Where weight reduction is a priority and shaft wall thickness or diameter can be reduced.
- Where a positive mechanical lock is required.

SERRATIONS - CLEARANCE OR INTERFERENCE FIT

Interference fit is provided by Shur-Lok.


THREAD SIZE


.391 through 4.325 inch.

Metric sizes available on request.

LOCKNUT

NOTES.

- MAGNETIC INSPECT PER ASTM E1444.
- ALL DIAMETERS \$\Phi\$ \Q .005 [0.13] \(\Phi \) A \(\Phi \) 2.

PERMANENTLY MARK (LASER MARKING OPTIONAL) SHUR-LOK LOGO THIS SURFACE, MUST BE LEGIBLE AFTER APPLICATION OF FINISH.

THIS SERIES OF LOCKNUTS CONFORM TO SPEC NAS 1493. AND CORRESPOND TO MATING SHUR-LOK SL60W (NAS1443) SERIES LOCKWASHERS.

THREAD: SAE STANDARD FOR BALL AND ROLLER BEARING LOCKNUTS. THREAD FORM TO SPEC MIL-S-7742.

REFER TO TSB 0001 FOR INSTALLATION AND REMOVAL OF LOCKNUTS AND LOCKWASHERS.

APPLICATION.

THESE LOCKNUTS ARE INTENDED FOR USE WITH SL60W (NAS1493) SERIES LOCKWASHER TO PROVIDE POSITIVE TORSIONAL LOCK BETWEEN SHAFT AND BEARING LOCKNUT FOR POSITIVE BEARING RETENTION, WHEREVER VIBRATION IS A FACTOR OR WHERE PRECISE TORQUE SETTING MUST BE HELD.

METRIC SIZES AVAILABLE ON REQUEST

UNLESS OTHERWISE SPECIFIED
INTERPRET DIMENSIONS & TOLERANCES PER
ANSI Y14.5M. ALL DIMENSIONS APPLY AFTER
PLATING AND PRIOR TO THE ADDITION OF SOLID FILM LUBRICANT. 125 [3.2] ALL SURFACES TOLERANCES ANGLES [X.X.] [X.X.X]

DIMENSIONS IN [] ARE MILLIMETERS

SL60 N 10 A F

EXAMPLE OF PART CODING

SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000

-FINISH (SEE TABLE III)

OMIT IF NOT REQUIRED SIZE (SEE TABLE 1)

"A" = DRILLED HOLE

BASIC PART NUMBER

-LOCKNUT

SHUR-LOK

SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11

SHEET

SL60N 1

OF

LOCKNUT, STA-LOK BEARING RETAINING (NAS 1493)

LOCKNUT

TABLE I

SHUR-LOK SL60N	NAS1493 BASIC	T THREAD	• A	8	φ 🗍		• F	, G
DASH NO	PART NUMBER	STD 8.2 CLASS 3B	+.005 [+0.13] 015 [-0.38]	+,005 [+0.13] -,000 [-0.00]	± .005 [0.13]	+.010 [+0.13] 000 [-0.00]	+.000 [+0.00] 005 [-0.13]	+.000 [+0.00] 005 [-0.13]
1	NAS1493-1	.391-32 NS	.719 [18.26]	.188 [4.78]	.599 [15.21]	.125 [3.18]	.512 [13.00]	.401 [10.19]
2	NAS1493-2	.469-32 NS	.812 [20,62]	.188 [4.78]	.693 [17.60]	.125 [3.18]	606 [15.39]	.479 [12.17]
3	NAS1493-3	.586-32 NS	.938 [23.83]	.219 [5.56]	.817 [20.75]	.125 [3.18]	.730 [18.54]	.596 [15.14]
4	NAS1493-4	.664-32 NS	1.062 [26.97]	.219 [5.56]	.943 [23.95]	.125 [3.18]	.856 [21.74]	.674 [17.12]
5	NAS1493-5	.781-32 NS	1,188 [30,18]	.250 [6.35]	1.067 [27.10]	.188 [4.78]	.980 [24.89]	.791 [20.09]
6	NAS1493-6	.969-32 NS	1.375 [34.93]	.250 [6.35]	1.255 [31.88]	.188 [4.78]	1.168 [29.67]	.979 [24.87]
7	NAS1493-7	1.173-18 NS	1.688 [42.88]	.281 [7.14]	1.505 [38.23]	.188 [4.78]	1.418 [36.02]	1.183 [30.05]
8	NAS1493-8	1.376-18 NS	1.906 [48.41]	.281 [7,14]	1.724 [43.79]	.188 [4.78]	1.637 [41.58]	1.386 [35.20]
9	NAS1493-9	1.563-18 NS	2,094 [53,19]	.281 [7.14]	1.911 [48.54]	.250 [6.35]	1.824 [46.33]	1.573 [39,95]
10	NAS1493-10	1.767-18 NS	2.312 [58.72]	.312 [7.92]	2.130 [54.10]	.250 [6.35]	2.043 [51.89]	1.777 [45.14]
11	NAS1493-11	1.967-18 NS	2.500 [63.50]	.312 [7.92]	2.317 [58.85]	.250 [6.35]	2.230 [56.64]	1.977 [50.22]
12	NAS1493-12	2.157-18 NS	2.750 [69.85]	.312 [7.92]	2.567 [65.20]	.250 [6,35]	2.480 [62.99]	2.167 [55.04]
13	NAS1493-13	2.360-18 NS	2.938 [74.63]	.344 [8.74]	2.755 [69.98]	.250 [6.35]	2.668 [67.77]	2.370 [60.20]
14	NAS1493-14	2.548-18 NS	3.125 [79.38]	.344 [8.74]	2.943 [74.75]	.250 [6.35]	2.856 [72.54]	2.558 [64.97]
15	NAS14593-15	2.751-18 NS	3.344 [84.94]	.344 [8.74]	3.161 [80.29]	.250 [6.35]	3.074 [78.08]	2.761 [70.13]
16	NAS1493-16	2.933-12 NS	3.688 [93.68]	.375 [9.53]	3.443 [87,45]	.375 [9.52]	3.356 [85.24]	2,943 [74,75]
17	NAS1493-17	3.137-12 NS	3.906 [99.21]	.375 [9.53]	3.661 [92.99]	.375 [9.52]	3.574 [90.78]	3.147 [79.93]
18	NAS1493-18	3.340-12 NS	4.125 [104.78]	.375 [9.53]	3.880 [98.55]	.375 [9.52]	3.793 [96.34]	3.350 [85.09]
19	NAS1493-19	3.527-12 NS	4.312 [109.52]	.375 [9.53]	4.067 [103.30]	.375 [9.52]	3,980 [101,09]	3.537 [89.84]
20	NAS1493-20	3.730-12 NS	4.531 [115.09]	.406 [10.31]	4.286 [108.86]	.375 [9.52]	4.199 [106.65]	3.740 [95.00]
21	NAS1493-21	3.918-12 NS	4.719 [119.86]	.406 [10.31]	4.474 [113.64]	.375 [9.52]	4,387 [111,43]	3.928 [99.77]
22	NAS1493-22	4.122-12 NS	4.906 [124.61]	.406 [10.31]	4.661 [118.39]	.500 [12.70]	4.574 [116.18]	4.132 [104.9]
23	NAS1493-23	4.325-12 NS	5.125 [130.18]	.406 [10.31]	4.880 [123.95]	.500 [12.70]	4,793 [121.74]	4.335 [110.11

TABLE II

MATERIAL	HEAT TREAT
4130 ALLOY STEEL PER MIL-S-6758 CONDITION F DASH SIZE 1 - 6	NONE
4130 ALLOY STEEL PER MIL-S-6758 CONDITION D, OR AMS 6361 OR MIL-T-6756 TYPE I SEAMLESS DASH SIZE 7 - 23	26-33 HRC PER MIL-H-6875

TABLE III

FINISH CODE	FINISH
F	BLACK OXIDE, DULITE OR EQUIVALENT PER MIL-C-13924, CLASS 1, GRADE C.
NONE	CADMIUM PLATE PER QQ-P-416, TYPE II CLASS 2.

METRIC SIZES AVAILABLE ON REQUEST

UNLESS OTHERWISE SPECIFIED
INTERPRET DIMENSIONS & TOLERANCES PER
ANSI Y14,5M. ALL DIMENSIONS APPLY AFTER
PLATING AND PRIOR TO THE ADDITION OF SOLID
FILM LUBRICANT. 125 [3,2] ALL SURFACES
TOLERANCES

XX XXX ANGLES [X.X.] [X.X.]
±.03 ±.010 ±2° ±(0.8] ±(0.25)
DIMENSIONS IN [] ARE MILLIMETERS

SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000

SHUR-LOK

SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11

SL60N

LOCKNUT, STA-LOK BEARING RETAINING (NAS 1493)

SHEET 2 OF 2

TABLE I

		DEOLUBES										T
SHUR-LOK	NAS1443	REQUIRED	φA	B	Φ	E	o F	G	J		MAX	APPROX
SL60W	BASIC PART	MAJOR DIA FOR SHAFT	''		-	_	'				SHAFT	WEIGHT
DASH	NUMBER	+.0000		+.010	+.005					+.010	RPM	LB/100
NUMBER	NOMIDER	0050	1	000	000		1		NO.	000		PIECES
/1		[+0.000]		{+0.25]	(+0.13]		l	1	OF	[+0.25]		LB
		[-0.127]		[-0.00]	[-0.00]			STOCK	SERR.	[-0.00]		[Kg]
SL60W1	NAS1443-1	.3910	.531	.128	.604	.095	.464	.024	30	.150	113,000	.45
		[9.931]	[13.49]	[3.25]	[15.34]	[2.41]	[11.79]	[0.61]		[3.81]		[.20]
SL60W2	NAS1443-2	.4690	.625	.128	.698	.115	.551	.024	36	.150	101,400	.52
		[11.913]	[15.88]	[3.25]	[17.73]	[2.92]	[14.00]	[0.61]		[3.81]		[.24]
SL60W3	NAS1443-3	.5860	.750	.159	.822	.115	.677	.050	46	.150	78,650	.66
		[14.884]	[19.05]	[4.04]	[20.88]	[2.92]	[17.20]	[1.27]		[3.81]		[.30]
SL60W4	NAS1443-4	.6640	.875	.159	.948	.115	.734	.050	52	.150	72,650	.71
		[16.866]	[22.23]	[4.04]	[24.08]	[2.92]	[18.64]	[1.27]		[3.81]		[.32]
SL60W5	NAS1443-5	.7810	1.000 [25.40]	.190 [4.83]	1.072	.178	.855 [21.72]	.050 [1.27]	61	.213 [5.41]	56,750	1.04
	,	[19.837]					1.042	.050				
SL60W6	NAS1443-6	.9690	1.188	.190	1.260	.178		[1.27]	76	.213 [5.41]	52,150	1.26 [.57]
		[24.613] 1.1730	1.438	.221	1.510	.178	1.255	.050		.213		1,61
SL60W7	NAS1443-7	[29.794]	[52.52]	[5.61]	[38.35]	[4.52]	[31.88]	[1.27]	93	[5.41]	40,150	[.73]
		1.3760	1.656	.221	1.729	.178	1.455	.050		.213		1.88
SL60W8	NAS1443-8	[34.950]	[69.66]	[5.61]	[43.92]	[4.52]	[36.96]	[1.27]	109	[5.41]	37,850	[.85]
		1.5630	1.844	.221	1.916	.240	1.642	.050		.275		2.10
SL60W9	NAS1443-9	[39.700]	[46.84]	[5.61]	[48.67]	[6.10]	[41.71]	[1.27]	124	[6.99]	36,050	[.95]
		1.7670	2.062	.252	2.135	.240	1.842	.050		.275		2.64
SL60W10	NAS1443-10	[44.882]	[52.37]	[6.40]	[54.18]	[6.10]	[46.79]	[1.27]	140	[6.99]	29,250	[1.20]
		1.9670	2.250	.252	2.322	.240	2.042	.050		.275		2.65
SL60W11	NAS1443-11	[49.962]	[57.15]	[6.40]	[58.98]	[6.10]	[51.87]	[1.27]	156	[6.99]	28,550	[1.20]
		2.1570	2.500	.252	2.572	.240	2.230	.050		.275		3.33
SL60W12	NAS1443-12	[54.788]	[63.50]	[6.40]	[65.33]	[6.10]	[56.64]	[1.27]	171	[6.99]	26,900	[1.51]
		2.3600	2.688	.284	2.760	.240	2.442	.050		.275		3.38
SL60W13	NAS1443-13	[59.944]	[68.28]	[7.21]	[70.10]	[6.10]	[62.03]	[1.27]	188	[6.99]	23,200	[1.53]
		2.5480	2.875	.284	2.948	.240	2.630	.050		.275		3.45
SL60W14	NAS1443-14	[64.719]	[73.03]	[7.21]	[74.88]	[6,10]	[66.80]	[1.27]	203	[6.99]	22,450	[1.56]
		2.7510	3.094	.284	3.166	.240	2.830	.050		.275		4.10
SL60W15	NAS1443-15	[69.875]	[78.59]	[7.21]	[80.42]	[6.10]	[71.88]	[1.27]	219	[6.99]	21,650	[1.86]
		2.9330	3.375	.305	3.448	.365	3.005	.050	077	.400	10.000	5.34
SL60W16	NAS1443-16	[74.498]	[85.73]	[7.75]	[87.58]	[9.27]	[76.33]	[1.27]	233	[10.16]	18,800	[2.42]
5. 46.447		3.1370	3.594	.317	3.666	.365	3.217	.050	250	.400	10.100	5.75
SL60W17	NAS1443-17	[79.680]	[91.29]	[8.05]	[93.12]	[9.27]	[81.71]	[1.27]	250	[10.16]	1,8,100	[2.61]
01. (01.11.1	11101117 15	3.3400	3.813	.315	3.885	.365	3.417	.050	2//	.400	17 / 40	6.27
SL60W18	NAS1443-18	[84.836]	[96.85]	[8.00]	[98.68]	[9.27]	[86.79]	[1.27]	266	[10.16]	17,640	[2.84]
		3.5270	4.000	.315	4.072	.365	3.605	.050	201	.400	17700	6.33
SL60W19	NAS1443-19	[89.586]	[101.60]	[8.00]	[103.43]	[9.27]	[91.57]	[1.27]	281	[10.16]	17,300	[2.87]
01.401400	NAC1447 00	3.7300	4.219	.339	4.291	.365	3.805	.050	297	.400	15,250	7.17
SL60W20	NAS1443-20	[94.742]	[107.16]	[8.61]	[108.99]	[9.27]	[96.65]	[1.27]	291	[10.16]	15,250	[3.25]
01.40040	NIAC1447 01	3.9180	4.406	.337	4.482	.365	3.999	.050	312	.400	14.880	7.23
SL60W21	NAS1443-21	[99.517]	[119.91]	[8.56]	[113.84]	[9.27]	[101.57]	[1.27]	312	[10.16]	14,880	[3.28]
51 (0)(1)	NAC1447 00	4.1220	4.594	.356	4.666	.490	4.192	.050	328	.525	14,560	7.89
SL60W22	NAS1443-22	[104.699]	[116.69]	[9.04]	[118.52]	[12.45]	[106.48]	[1.27]	328	[13.34]	14,360	[3.58]
		4.3250	4.812	.347	4.885	.490	4.405	.050		.525		8.25
SL60W23	NAS1443-23	4.0200							345		14,230	

TABLE II

FINISH CODE	FINISH
NONE	BLACK OXIDE PER MIL-C-13924, CLASS 1, GRADE C PLUS MIL-C-16173 GRADE 3 COMPOUND
Р	CADMIUM PLATE PER QQ-P-416, TYPE 11, CLASS 2
S	SILVER PLATE PER AMS 2412, .00010005 [0.003-0.013] THICKNESS

METRIC SIZES AVAILABLE ON REQUEST

UNLESS OTHERWISE SPECIFIED

INTERPRET DIMENSIONS & TOLERANCES PER
ANSI Y14.5M. ALL DIMENSIONS APPLY AFTER
PLATING AND PRIOR TO THE ADDITION OF SOLID
FILM LUBRICANT. 125 [3,2]
ALL SURFACES

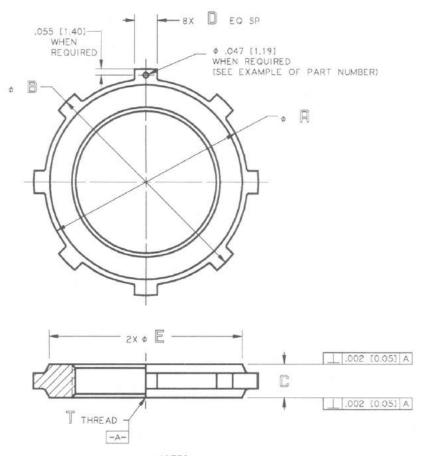
XX XXX ANGLES [X.X.] [X.X.]
±.03 ±.010 ±2" ±[0.8] ±[0.25]

DIMENSIONS IN [] JARE MILLIMETERS

SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000

SHUR-LOK

SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11


SL60W

LOCKWASHER STA-LOK BEARING LOCKNUT. RETAINING (NAS 1443)

SHEET 2 OF 2

LOCKNUT —STA-LOK

NOTES

- MAGNETIC PARTICLE INSPECT PER ASTM E1444 FOR 4130 MATERIAL LIQUID PENETRANT INSPECT PER MIL-STD-6866 FOR A286 CRES MATERIAL.
- 2. ALL DIAMETERS + Ø.005 [0.13] AM

DASH NUMBERS 1 THRU 31 WITH THREAD PER ANSI/AFBMA STD 8.2 IN TABLE I CORRESPOND TO MATING SL61W, SL60W OR NAS1443 SERIES LOCKWASHERS.

DASH NUMBERS 375 THRU 1625 WITH THREAD PER MIL-S-8879 IN TABLE I CORRESPOND TO MATING SL61W SERIES LOCKWASHERS, DASH 3730 USES SL61W20() LOCKWASHER.

HEAT TREAT 26-33 HRC PER MIL-H-6875.

- - REFER TO TSB 0001 FOR INSTALLATION OF LOCKNUTS AND LOCKWASHERS
 - THESE LOCKNUTS ARE INTENDED FOR USE WITH LOCKWASHERS TO PROVIDE A POSITIVE TORSIONAL LOCK BETWEEN SHAFT AND BEARING LOCKNUT FOR POSITIVE BEARING RETENTION, WHEREVER VIBRATION IS A FACTOR OR WHERE A PRECISE TORQUE SETTING MUST BE HELD.

"N" FINISH CODE FOR 4130 MATERIAL INDICATES PART WITH NO FINISH, DIP IN LIGHT OIL FOR PROTECTION. FOR CRES PARTS NO OIL IS REQUIRED.

METRIC SIZES AVAILABLE ON REQUEST

UNLESS OTHERWISE SPECIFIED
INTERPRET DIMENSIONS & TOLERANCES PER
ANSI Y14.5M. ALL DIMENSIONS APPLY AFTER
PLATING AND PRIDE TO THE ADDITION OF SOLID
FILM LUBRICANT. 125 [3,2]
ALL SURFACES
TOLERANCES TOLERANCES XX XXX ANGLES [X.X.] [X.X.X] ±.03 ±.010 ±2" ±[0.8] ±[0.25]

DIMENSIONS IN [] ARE MILLIMETERS

EXAMPLE OF PART CODING

SL61N 375 A P K

SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000

MATERIAL CODE (SEE TABLE II)

FINISH CODE

SIZE CODE (SEE TABLE 1)

(SEE TABLE III)

"A" = DRILLED HOLE

BASIC PART NUMBER

OMIT IF NOT REQUIRED

OMIT FOR STEEL 4130

SHUR-LOK

SHUR-LOK INTERNATIONAL, S.A PETIT-RECHAIN, BELGUIN TELEPHONE: (32) 87-32.07.11

LOCKNUT,STA-LOK **BEARING RETAINING** SL61N

SHEET 1

90 0

LOCKNUT —STA-LOK

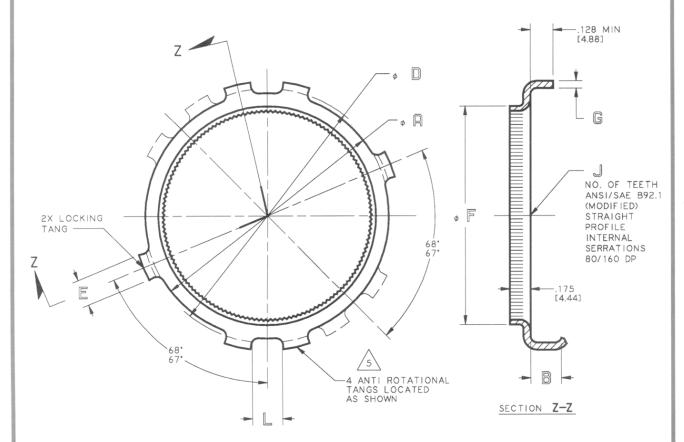
TABLE I

	T	HREAD		A		B		C			_	E
SIZE	ANSI/AFBMA	PER	. "	6.0	9	9		₩			, °	
CODE	STD B.2 CLASS 3	MIL-S-8879 CLASS-38 4		+[0.25] -[0.00]								
250		.2500-28UNJF							.095	[2.41]		
1	.391-32 NS	(100)							.125	[3.18]		
312-18		.3125-18UNJC	594	[15.09]	719	[18.26]	188	[4.78]			512	[13.00]
312-24		.3125-24UNJF	15,7	2.0.0.0				6.71.7363	00000		767.762	10.003
375		.3750-32UNJEF							.095	[2.41]		
375-24	-	.3750-24UNJF										
2	.469-32 NS		.688	[17.48]	.812	[20.62]	.188	[4.78]	.125	[3.18]	.606	[15.39]
437		.4375-28UNJEF				A CONTRACTOR OF THE PARTY OF TH	10.50,000	Serientissos:	5.105.29	A190X1304915 54	K8031102	7
3	.586-32 NS											
500		.5000-28UNJEF	.812	[17.48]	.938	[23.83]	.219	[5,56]	.125	[3.18]	730	[18.54]
562		.5625-24UNJEF										
4	.664-32 NS	1050 0440 55	.938	[23.83]	1.062	[26.97]	.219	[5.56]	.125	[3,18]	856	[21.74]
625	701 72 110	.6250-24UNJEF										
750	.781-32 NS	7500-201N FF	1.062	[26.97]	1.188	[30,18]	.250	[6.35]	.188	[4.78]	.980	[24.89]
	.969-32 NS	.7500-20UNJEF										
875	.767-32 N3	.8750-20UNJEF	1.250	[31,75]	1.375	[34.93]	.250	[6.35]	.188	[4.78]	1.168	[29.67]
7	1.173-18 NS	.8730-200N3EF			_		_		_			
1000	1.175-16 NS	1,0000-16UNJ	1 500	[38.10]	1 6 9 9	[42.88]	291	[7.14]	100	[4.78]	1 410	[36.02]
1125		1.1250-16UNJ	1.500	(30.10)	1.000	[46,00]	.201	L/1.1.40	.100	14,701	1.410	100,021
8	1.376-18 NS	1.12.50-100115							-			
1250		1.2500-16UNJ	1719	[43.43]	1 906	[48.41]	281	[7.14]	188	[4.78]	1.637	[41.58]
1375		1.3750-16UNJ	******	. 10.103	100	140.412	,201	511176	.100	14.701	1,007	147.562
9	1.563-18 NS	1.5730 100110					8					
1500		1.5000-16UNJ	1.906	[48.41]	2.094	[53,19]	.281	[7.14]	.250	[6.35]	1.824	[46.33]
10	1.767-18 NS								_			
1625		1.6250-16UNJ	2.125	[53.98]	2,312	[58.72]	.312	[7.92]	.250	[6,35]	2.043	[51.89]
11	1.967-18 NS		2.312	[58.93]	2.500	[63.50]	312	[7.92]	.250	[6.35]	2.230	[56.64]
12	2.157-18 NS			[65.07]	2.750	[69.85]	.312	[7.92]	.250	[6.35]		[62.99]
13	2.360-18 NS		2.750	[69.85]	2.938	[74.63]	.344	[8,74]	.250	[6.35]	2.668	[67.78]
14	2.548-18 NS		2.938	[74.63]	3.125	[79.38]	.344	[8.74]	.250	[6.35]	2.856	[72.54]
15	2.751-18 NS		3.156	[80.16]		[84.94]	.344	[8.74]	.250	[6.35]	3.074	[78.08]
16	2.933-12 NS		3.438	[87.33]	3.688	[93.68]	.375	[9,53]	.375	[9.53]	3,356	[85.24]
17	3.137-12 NS		3.656	[92.87]	3.906	[99.21]	.375	[9.53]	.375	[9.53]	3.574	[90,78]
18	3.340-12 NS		3.875	[98.43]	4.125	[104.78]	.375	[9.53]	.375	[9.53]	3.793	[96.34]
19	3.527-12 NS	-	4.062	[103.17]	4.312	[109.52]	.375	[9,53]	.375	[9.53]	3.980	[96.52]
20	3.730-12 NS		4201	[100 741	A E 74	F1.1 E 0.03	404	F10.711	775	10 571	4.100	1107 22
3730		3.7300-12UNJS	4.681	(108.74)	4.551	[115.09]	.406	10.311	.575	[7.53]	4.199	[106.64]
21	3.918-12 NS		4.469	[113.51]	4,719	[119.86]	.406	[10.31]	.375	[9.53]	4.387	[111,43]
22	4.122-12 NS	-	4.656	[118.26]	4.906	[124.61]	.406	[10.31]	.500	[12,70]	4.574	[116.18]
23	4.325-12 NS		4.875	[123.83]	5.125	[130.18]	.406	[10.31]	.500	[12.70]	4.793	[121.74]
25	4.716-12 NS		5.567	[141,40]	5.812	[147.62]	.432	[10.97]	.500	[12.70]	5.410	[137.41]
31	5.888-12 NS		6.950	[176.53]	7.250	[184,15]	670	[17.02]	625	115.881	6.793	[172.54]

METRIC SIZES AVAILABLE ON REQUEST

UNLESS OTHERWISE SPECIFIED
INTERPRET DIMENSIONS & TOLERANCES PER
ANSI 174.5M. ALL DIMENSIONS APPLY AFTER
PLATING AND PRIOR TO THE ADDITION OF SOLID
FILM LUBRICANT. 125 [3,2]
ALL SURFACES
TOLERANCES

SHUR-LOK COPORATION RVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000


SHUR-LOK

SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11

LOCKNUT,STA-LOK BEARING RETAINING SL61N

SHEET 2 OF 3

NOTES.

DASH NUMBERS IN TABLE I CORRESPOND TO MATING SHUR-LOK SL60N (NAS1493) SERIES LOCKNUTS.

- OUT OF ROUNDNESS IS PERMISSIBLE. THIS CONDITION CORRECTS ITSELF UPON INSTALLATION.
- 3. MAGNETIC PARTICLE INSPECT PER ASTM E1444.
- 4. MATERIAL: ALLOY STEEL 4130 PER MIL-S-18729
 OR MIL-S-6758.
 HEAT TREATED PER MIL-H-6875 TO 34-38 HRC.

ANTI ROTATIONAL TANGS MAY BE LOCATED EITHER SIDE OF LOCKING TANG.

- REFER TO TSB 0001 FOR INSTALLATION AND REMOVAL OF LOCKNUTS AND LOCKWASHERS.
- CONSULT SHUR-LOK TECHNICAL SERVICES DEPARTMENT FOR ALTERNATE MATERIALS AND FINISHES.
- 8. THIS LOCKWASHER SERIES CONFORMS TO NAS1443.

APPLICATION:

THIS LOCKWASHER IS INTENDED FOR USE WITH AN SL60N (NAS1493) SERIES BEARING LOCKNUT TO PROVIDE POSITIVE TORSIONAL LOCK BETWEEN SHAFT AND BEARING LOCKNUT FOR POSITIVE BEARING RETENTION, WHEREVER VIBRATION IS A FACTOR OR WHERE PRECISE TORQUE SETTING MUST BE HELD.

EXAMPLE OF PART CODING:

METRIC SIZES AVAILABLE ON REQUEST

SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000 **SHUR-LOK**

SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11

SL60W

LOCKWASHER STA-LOK BEARING LOCKNUT, RETAINING (NAS 1443)

SHEET 1 OF

TABLE II

IADLL	11
MATL CODE	MATERIAL
NONE	4130 ALLOY STEEL PER MIL-S-6758, AMS 6361 OR MIL-T-6736
К	A286 CRES PER AMS 5737 OR MIL-T-6736

TABLE III

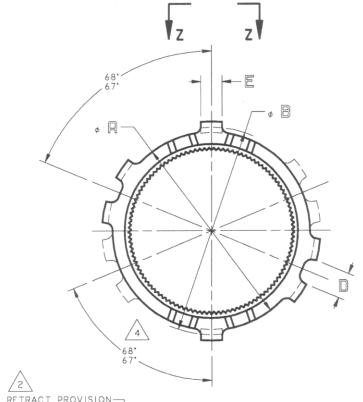
FINISH CODE	FINISH
F	BLACK OXIDE PER MIL-C-13924 CLASS 1, PLUS MIL-C-16173, GRADE 3
Р	CADMIUM PLATE PER QQ-P-416, TYPE II , CLASS 2
S	SILVER PLATE PER AMS 2410
D	DRY FILM LUBE PER MIL-L-46010 TYPE 1
N	NO FINISH

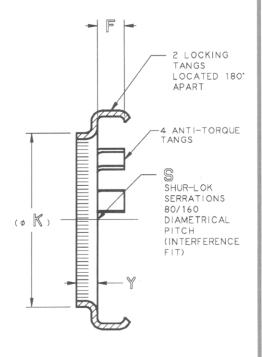
TABLE I V

DASH	MIL-S-8879 SPECIAL	MAJOR	PITCH	MINOR
NO.	THREAD FROM TABLE I	DIA	DIA	DIA
3730	3.7300-12 UNJS-3B	3.7484 3.7300	3.6822 3.6759	3.6588 3.6488

METRIC SIZES AVAILABLE ON REQUEST

UNLESS OTHERWISE SPECIFIED
INTERPRET DIMENSIONS & TOLERANCES PER
ANSI 1/4 5M. ALL DIMENSIONS APPLY AFTER
PLATING AND PRIOR TO THE ADDITION OF SOLID
FILM LUBRICANT. 125 [3,2]
ALL SURFACES
TOLERANCES


SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000



SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11

LOCKNUT, STA-LOK BEARING RETAINING SL61N

SHEET 3 OF 3

RETRACT PROVISION-(DASH SIZES 4 TO 15) VIEW Z - Z

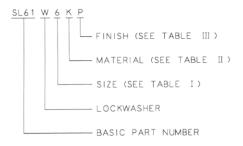
NOTES:

DASH NUMBERS IN TABLE I CORRESPOND TO MATING SHUR-LOK SL61N SERIES LOCKNUTS.

THIS LOCKWASHER IS EQUIPPED WITH RETRACT PROVISION FOR REMOVAL OF LOCKWASHER FROM LOCKNUT.

MAGNETIC PARTICLE INSPECT ASTM E1444 FOR 4130 MATERIAL. LIQUID PENETRANT INSPECT MIL-STD-6866 FOR CRES MATERIAL.

OPTIONAL LOCATIONS OF THE 2 LOCKING TANGS AND RETRACT PROVISION LOCATED 180° APART.


MAJOR DIAMETER OF MATING SHAFT MUST BE HELD AT MAX MAJOR DIAMETER +.000/-.002.

- CONSULT SHUR-LOK FOR ALTERNATE MATERIALS AND FINISHES.
- FOR INSTALLATION AND REMOVAL REFER TO TECHNICAL SALES BULLETIN - TSB 0001.
- OUT OF ROUNDNESS IS PERMISSIBLE, THIS CONDITION CORRECTS ITSELF UPON INSTALLATION.

APPLICATION:

THIS LOCKWASHER IS INTENDED FOR USE WITH AN SL61N SERIES BEARING LOCKNUT TO PROVIDE POSITIVE TORSIONAL LOCK FOR POSITIVE BEARING RETENTION, BETWEEN SHAFT AND BEARING LOCKNUT WHEREVER VIBRATION IS A FACTOR OR WHERE PRECISE TORQUE SETTING MUST BE HELD.

EXAMPLE OF PART CODING

METRIC SIZES AVAILABLE ON REQUEST

UNLESS OTHERWISE SPECIFIED UNLESS OTHERWISE SPECIFIED
INTERPRET DIMENSIONS & TOLERANCES PER
ANSI Y14.5M. ALL DIMENSIONS APPLY AFTER
PLATING AND PRIOR TO THE ADDITION OF SOLID
FILM LUBRICANT. 125 [3.2]
ALL SURFACES
TOLERANCES TOLERANCES ANGLES [X.X.] ±.03 ±.010

DIMENSIONS IN [] ARE MILLIMETERS

±[0.8]

±[0.25]

SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000

SHUR-LOK

SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11

LOCKWASHER, RETAINING STA-LOK **BEARING LOCKNUT, SAE SERIES**

SL61W

SHEET 1 of 3

LOCKWASHER STA-LOK

<u></u>	[L]	L	Φ ₩ REF	>	NUMBER OF SERR	OPERATING RPM MAX	APPROX WEIGHT LB/100 PIECES
3 560" -	.095 [2.42] .133	3 [3,38] .46	54 [11.79]	.175 (4.45]	30	113,000	.45
[3,94]	.115 [2,92] .133	[3,38]	.551 [13,99]	.175 [4,45]	38	101,400	.53
[3,94] .115 [.115 [2.92] .164	[4,17]	677 [17.20]	.175 [4.45]	46 N/A	78,650	99'
(3.94) .115 [.115 [2.92] .164	[4,17]	.734 [18.64]	.175 [4.45]	52	72,650	.70
(5.54) .178 (.178 [4.52] .195	[4.95]	855 [21,72]	.175 [4.45]	19	56,750	1.03
178 [5.54]	.178 [4.52] .195	[4,95]	.042 [26.47]	.175 [4.45]	76	52,150	1.25
178 [5.54]	.178 [4.52] .226	[5.74]	.255 [31.88]	,175 [4,45]	93	40,150	1.61
[5.54] .178 [.178 [4.52] .226	[5,74]	.455 [36.96]	.175 [4.45]	109	37,850	1.87
[7,11] .240 [.240 [6.10] .226	5 [5.74] 1.642	42 [41.71]	.175 [4.45]	124	36,050	5.09
17.113 .240 [.240 [6.10] .257	[6.53]	.842 [46.79]	.175 [4,45]	140	29,250	2.64
[7,111] .240 [.240 [6.10] .257	7 [6.53] 2:042	42 [51.87]	.175 [4.45]	156	28,550	2.36
17.111 .240 [.240 [6.10] .257	7 [6.53] 2.230	30 [56.64]	.175 [4.45]	171	26,900	3,33
17.111 .240 (.240 (6.10] .289	9 [7,34] 2,442	42 [62.03]	.175 [4.45]	188	23,200	3,37
[7,11] .240 [.240 [6.10] 289	9 [7.34] 2.630	30 [66,80]	.175 [4,45]	203	22,450	3.45
7.111 .240 (.240 (6.10] .289	9 [7.34] 2.830	30 [71,88]	.175 [4,45]	219	21,650	4.10
110.291 .365	.365 [9.27] .310	0 [7.87] 3.005	05 [76.33]	.175 [4.45]	233	18,800	5.33
1 365.	.365 (9.27) .322	2 [8.19] 3.217	[17.18] 71	.175 [4.45]	250	18,100	5.75
10.291 .365	.365 [9.27] .320	0 [8,13] 3,417	17 [86.79]	.175 [4,45]	266	17,640	6.27
10.291 365 [365 [9.27] ,320	0 [8.13] 3.605	05 [91.57]	.175 [4,45]	281	17,300	6.33
110.291 .365 [.365 [9.27] .344	4 [8.74] 3.805	05 [96.65]	.175 [4.45]	297 N/A	15,250	7.16
10.291 365 [365 [9.27] 342	2 (8,68) 3.992	92 [101.40]	.175 [4.45]	312	14,880	7.23
[13.46] .490 [1	.490 [12.45] .361	1 [9.18] 4.192	92 [106.48]	.175 [4.45]	328	14,560	7.89
[13.46] ,490 [1	.490 [12.45] .352	2 (8.95) 4,405	05 [111.89]	.175 [4.45]	345	14,230	8.25
[13.46] .490 [1	.490 [12.45] .342	2 [8.69] 4.792	121.72	.375 (9.53)	376	TBD	TBD
[16.64] .615 [15.62]					0.000		400

REVISION (N) 17 APR 1997

METRIC SIZES AVAILABLE ON REQUEST

INTERPRET DIMENSIONS & TOLERANCES PER ANSI Y14.5M ALL DIMENSIONS APPLY AFTER PLATING AND PRIOR TO THE ADDITION OF SOLID FILM LUBRICANT. 125 [3.2] ALL SURFACES

 SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000 SHUR-LOK

SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-82.07.11

LOCKWASHER RETAINING STA-LOK BEARING LOCKNUT, SAE SERIES SL61W

SHEET 2 OF 3

TABLE I CONTINUED

SIZE DASH	• A	ø B	D		F	• K	R M̃
NO.		± .005 [0.13]	± .005 [0.13]		± .005 [0.13]	REF	± .005 [0.13]
372	.531 [13.49]	.609 [15.47]	.112 [2.84]	.095 [2.42]	.133 [3.38]	.436 [11.76]	.037 [0.95]
375	.531 [13.49]	.609 [15.47]	.112 [2.84]	.095 [2.42]	.133 [3.38]	.436 [11.76]	.037 [0.95]
437	.625 [15.88]	.703 [17.86]	.155 [3.94]	.115 [2.92]	.133 [3.38]	.553 [13.34]	.041 [1.03]
500	.750 [19.05]	.827 [21.01]	.155 [3.94]	.115 [2.92]	.164 [4.17]	.588 [14.94]	.045 [1.15]
562	.750 [19.05]	.827 [21.01]	.155 [3.94]	,115 [2.92]	.164 [4.17]	.650 [16.51]	.045 [1,15]
625	.875 [22.23]	.948 [24.08]	.155 [3.94]	,115 [2.92]	.164 [4,17]	.693 [17.61]	.049 [1.25]
750	1.000 [25.40]	1.077 [27.36]	.218 [5.54]	.178 [4.52]	.195 [4.95]	.830 [21.03]	.049 [1.25]
875	1.188 [30.18]	1.265 32.13]	.218 [5.54]	.178 [4.52]	.195 [4.95]	.955 [24.26]	.039 [0.99]
1000	1,438 [36,53]	1.515 [38.48]	.218 [5.54]	.178 [4.52]	.226 [5.74]	1,080 [27.43]	.044 [1.13]
1125	1.438 [36.53]	1.515 [38.48]	.218 [5.54]	.178 [4.52]	.226 [5.74]	1,205 [30.61]	.044 [1.13]
1250	1.656 [42.06]	1.734 [44.04]	.218 [5.54]	.178 [4.52]	.226 [5.74]	1.330 [33.78]	.044 [1.13]
1375	1.656 [42.06]	1.734 [44.04]	.218 [5.54]	.178 [4.52]	.226 [5.74]	1,455 [36,96]	.044 [1.13]
1500	1.844 [46.84]	1.921 [48.79]	.280 [7.11]	.240 [6.10]	,226 [5.74]	1,580 [40.13]	.044 [1.13
1562	1.844 [46.84]	1.921 [48.79]	.280 [7.11]	.240 [6.10]	.226 [5.74]	1.642 [41.71]	.049 [1.25]
1625	2.062 [52.37]	2.140 [54.36]	.280 [7.11]	.240 [6.10]	.257 [6.53]	1.705 [43.31]	.049 [1.25]

TABLE II

MATL	MATERIAL & HEAT TREAT
NONE	4130 ALLOY STEEL PER MIL-S-18729. COND A. OR MIL-S-6758. HEAT TREAT 34-38 HRC PER MIL-H-6875
С	Z8CND17-04 PER AIR 9160 (1100-1250 MPa) OR 17-7 PH PER MIL-S-25043 OR AMS 5528 COND. H1050
К	A286 CRES PER AMS 5737 OR AMS 5525 140 KSI UTS MIN

TABLE III

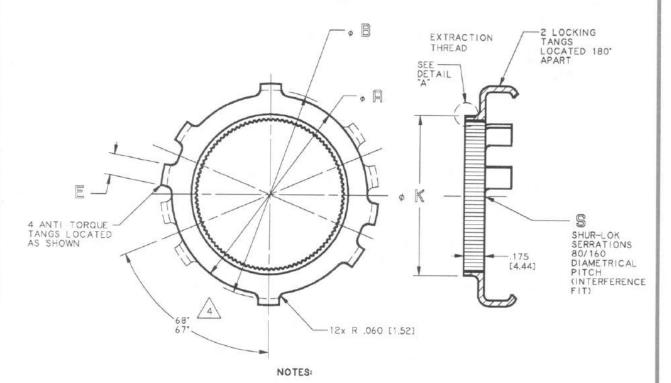
CODE	FINISH								
NONE	BLACK OXIDE PER MIL-C-13924, CLASS 1 PLUS MIL-C-16173 GRADE 3 COMPOUND								
Р	CADMIUM PLATE PER QQ-P-416, TYPE IL CLASS 2.								
S	SILVER PLATE PER AMS 2412, .00010005 [0.003-0.013] THICKNESS								
Υ	PASSIVATE PER QQ-P-35								

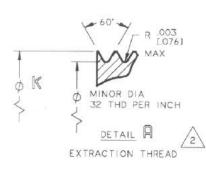
METRIC SIZES AVAILABLE ON REQUEST

INTERPRET DIMENSIONS & TOLERANCES PER ANSI Y145M ALL DIMENSIONS APPLY AFTER PLATING AND PRIOR TO THE ADDITION OF SOLID FILM LUBRICANT. 126 32] ALL SURFACES TOLERANCES

SHUR-LOK COPORATION
IRVINE, CALIFORNIA 92614
TELEPHONE: (714) 474-6000

SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11


LOCKWASHER, RETAINING STA-LOK BEARING LOCKNUT, SAE SERIES


SL61W

SHEET 3 OF 3

LOCKWASHER STA-LOK

DASH NUMBERS IN TABLE III CORRESPOND TO MATING SL61N SERIES LOCKNUTS.

THIS LOCKWASHER IS EQUIPPED WITH AN EXTRACTION THREAD FOR ATTACHING EXTRACTION TOOL TO REMOVE LOCKWASHER FROM LOCKNUT

MAGNETIC PARTICLE INSPECT ASTM E1444 FOR 4130 MATERIAL. LIQUID PENETRANT INSPECT MIL-STD-6866 FOR CRES MATERIAL.

OPTIONAL LOCATIONS OF THE 2 LOCKING TANGS.

MAJOR DIAMETER OF MATING SHAFT MUST BE HELD AT MAX MAJOR DIAMETER +.000/-.002.

- CONSULT SHUR-LOK TECHNICAL SERVICES DEPARTMENT FOR ALTERNATE MATERIALS AND FINISHES.
- FOR INSTALLATION AND REMOVAL REFER TO TECHNICAL SALES BULLETIN - TSB 0001.
- OUT OF ROUNDNESS IS PERMISSIBLE, THIS CONDITION

CORRECTS ITSELF UPON INSTALLATION.

MAJOR THREAD DIA MODIFIED PER K DIMENSION.

EXAMPLE OF PART CODING

APPLICATION:

THIS LOCKWASHER IS INTENDED FOR USE WITH AN SL61N SERIES BEARING LOCKNUT TO PROVIDE POSITIVE TORSIONAL LOCK BETWEEN SHAFT AND BEARING LOCKNUT FOR POSITIVE BEARING RETENTION, WHEREVER VIBRATION IS A FACTOR OR WHERE PRECISE TORQUE SETTING MUST BE HELD.

METRIC SIZES AVAILABLE ON REQUEST

UNLESS OTHERWISE SPECIFIED
INTERPRET DIMENSIONS & TOLERANCES PER
ANSI Y14.5M. ALL DIMENSIONS APPLY AFTER
PLATING AND PRIOR TO THE ADDITION OF SOLID FILM LUBRICANT. 125 [3.2] ALL SURFACES TOLERANCES

ANGLES [X.X.] [X.X.X] ±[0.8] ±[0.25] DIMENSIONS IN [] ARE MILLIMETERS

SHUR-LOK

SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11

LOCKWASHER, RETAINING REMOVAL-THREADED STA-LOK, SAE SERIES

SL61WT

1 OF SHEET

LOCKWASHER STA-LOK -

TABLE I

MATL CODE	MATERIAL AND HEAT TREAT
NONE	4130 STEEL BAR PER MIL-S-6758 - FOR SIZE DASH 3 AND UNDER. 4130 STEEL SHEET PER MIL-S-18729 COND.A - FOR SIZE DASH 4 AND OVER. HEAT TREAT ALL HRC 34-38 PER MIL-H-6875
К	A286 CRES PER AMS 5737 OR AMS 5525 140 KSI UTS MIN

TABLE II

CODE	FINISH
F	BLACK OXIDE PER MIL-C-13924, CLASS I, PLUS MIL-C-16173, GRADE 3 OIL.
Р	CAD PLATE PER QQ-P-416, TYPE II, CLASS 2 BAKE AT 375'F ± 25'F FOR THREE HOURS MIN WITHIN FOUR HOURS AFTER PLATING.
S	SILVER PLATE PER AMS 2412, PLATING THICKNESS TO BE 0.003-0.013 ON THREADS.
Y	PASSIVATE PER QQ-P-35

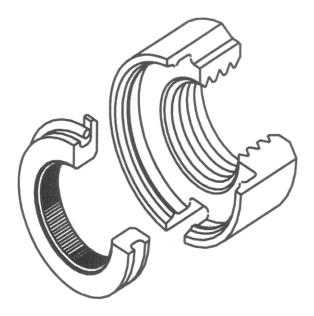
TABLE III

SIZE DASH NO.	1, 15,000,000,000	T THD REF	9	A	ф	B			ΦK		EXTRACTION THREAD SIZE UNJS-3A MOD	NUMBER OF SERR
\triangle 1		5			±.005	5 [0.13]					29	S
0	.250	[6.35]	.531	[13,49]	.609	[15.47]	.100	[2.54]	.463	[11.76]	.4701-32	19
2	.4675	[11.86]	.625	[15.88]	.703	[17.86]	.115	[2.92]	.550	[13.97]	.5581-32	36
3	.586	[14.88]	.750	[19.05]	.827	[21.01]	.115	[2.92]	.677	[17.20]	.6831-32	46
4	.664	[16.87]	.875	[22.23]	.953	[24.21]	.115	[2.92]	.734	[18.64]	.7381-32	52
5	.7800	[19.81]	1.000	[25.40]	1.077	[27.36]	.178	[4.52]	.855	[21.72]	.8701-32	61
6	.9675	[24.57]	1.188	[30.18]	1.265	[32,13]	.178	[4.52]	1.042	[26.47]	1.0581-32	76
8	1.376	[29.79]	1.656	[42.06]	1.734	[44.04]	.178	[4.52]	1.455	[36.96]	1.4711-32	109
9	1.563	[34.95]	1.844	[46.84]	1.921	[48.79]	240	[6.10]	1.642	[41.71]	1.6581-32	124
10	1.767	[39.70]	2.062	[52.37]	2.140	[54.36]	240	[6.10]	1.842	[46.79]	1.8581-32	140
11	1.967	[44.88]	2.250	[57.15]	2.327	[59.11]	.240	[6.10]	2.042	[51.87]	2.0581-32	156
12	2.1550	[49.96]	2.500	[63.50]	2.577	[65.46]	.240	[6.10]	2.230	[56.64]	2.2461-32	171
14	2.5480	[54.74]	2.875	[73.03]	2.953	[75.01]	.240	[6.10]	2.630	[66.80]	2.6461-32	203
312	.3125	[7.94]	.531	[13.49]	.609	[15.47]	.100	[2.54]	.463	[11.76]	.4701-32	24
375	.3750	[9.53]	.531	[13.49]	.609	[15.47]	.100	[2.54]	.463	[11.76]	.4701-32	29
437	.4375	[11,11]	.625	[15.88]	.703	[17.86]	.115	[2.92]	.525	[13.34]	.5331-32	34
500	.5000	[74.42]	.750	[87.71]	.827	[21.01]	.115	[2.92]	.588	[14.94]	.5961-32	39
562	.5625	[14.29]	.750	[19.05]	.827	[21,01]	.115	[2.92]	.650	[16.51]	.6581-32	44
625	.6250	[15.88]	.875	[22.23]	.948	[24.08]	.115	[2.92]	.693	[17.60]	.7011-32	49
750	.7500	[19.05]	1.000	[25.40]	1.077	[27.36]	.178	[4.52]	.830	[21.08]	.8461-32	59
875	.8750	[22.23]	1.188	[30.18]	1.265	[32.13]	.178	[4.52]	.955	[24.26]	.9711-32	69
1000	1.0000	[25.40]	1.438	[36.53]	1.515	[38.48]	.178	[4.52]	1.080	[27.43]	1.0961-32	79
1125	1.1250	[28.58]	1.438	[36.53]	1.515	[38.48]	.178	[4.52]	1.205	[30.61]	1.2211-32	89
1250	1.2500	[31.75]	1.656	[42.06]	1.734	[44.04]	.178	[4.52]	1.330	[33.78]	1.3461-32	99
1375	1.3750	[34.93]	1.656	[42.06]	1.734	[44.04]	.178	[4.52]	1.455	[36.96]	1.4711-32	109
1500	1.5000	[38.10]	1.844	[46.84]	1.921	[48.79]	.240	[6.10]	1.580	[40.13]	1.5961-32	119
1562	1.5625	[39.69]	1.844	[46.84]	1.921	[48.79]	.240	[6.10]	1.642	[41.71]	1.6581-32	124
1625	1.6250	[41.28]	2.062	[52.37]	2.140	[54.36]	.240	[6.10]	1.705	[43.31]	1.7211-32	129

METRIC SIZES AVAILABLE ON REQUEST

UNLESS OTHERWISE SPECIFIED
INTERPRET DIMENSIONS & TOLERANCES PER
ANSI Y145M. ALL DIMENSIONS APPLY AFTER
PLATING AND PRIOR TO THE ADDITION OF SOLID
FILM LUBRICANT. 125 (3.2)
ALL SURFACES
TOLERANCES TOLERANCES

SHUR-LOK


SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11

SL61WT

LOCKWASHER, RETAINING REMOVAL-

SHEET 2 OF 2

STA-LOK, SNAP-IN

FEATURES AND BENEFITS

- Positive mechanical lock that is not dependent on lubricants or plating for repeatability.
- Achieves precise preload serrations provide adjustment that eliminates back-off or overtorque.
- Maintains fatigue strength at reduced weight. External serrations in the nonload carrying portion of the thread eliminates keyways allowing reduction of shaft wall thickness or diameter.
- Key way stress concentrations are eliminated.
- Internal serrations of washer mates with serrated shaft.
- Serration clearance for ease of washer installation and removal.
- External lugs of serrated washer engages slots of nut.
- Internal groove of nut accepts retaining ring of washer.
- Can be designed in various wrenching configurations.

SHAFT/BOLT SERRATIONS

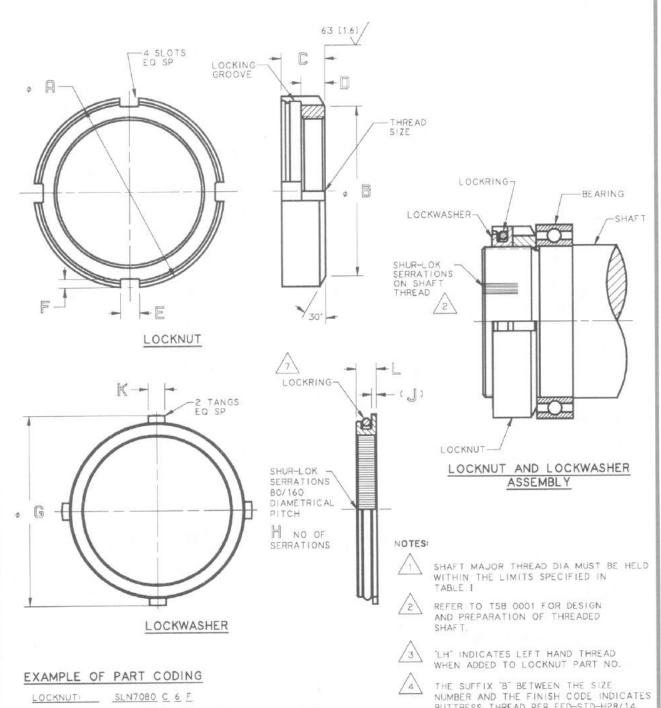
Broaching is required on shaft or bolt. For installation and removal of locknuts and lockwashers, refer to Technical Sales Bulletin - TSB 0001.

APPLICATIONS

- Where ease of installation is preferred.
- Non-rotating applications where positive retention is desired.
- Where achieving precise preload is critical and existing nuts cannot provide adequate adjustment.
- Where weight reduction is a priority and shaft wall thickness or diameter can be reduced. For example: where keyway can be eliminated.
- Allows for better shaft balance than conventional positive locks.

SERRATION CLEARANCE OR INTERFERENCE FIT

Clearance fit is provided by Shur-Lok for ease of installation.


THREAD SIZE

.250 inch and larger.

Metric sizes available on request.

POSITIVE LOCK LOCKNUT

SLW7080 C 6 LOCKWASHER FINISH (SEE TABLE III) LOCKNUT AND LOCKWASHER SIZE - MATERIAL (SEE TABLE II) BASIC PART NO.

THE SUFFIX "B" BETWEEN THE SIZE NUMBER AND THE FINISH CODE INDICATES BUTTRESS THREAD PER FED-STD-H28/14. EXAMPLE SLN7080-16BF. (SEE TABLE I).

THREAD PER AMERICAN NATIONAL FORM NS. CLASS 3B PER ANSI/AFBMA STD 8.2 (SEE TABLE 1).

HEAT TREAT: 23-33 HRC PER MIL-H-6875.

METRIC SIZES AVAILABLE ON REQUEST

UNLESS OTHERWISE SPECIFIED
INTERPRET DIMENSIONS & TOLERANCES PER
ANSI Y14.5M. ALL DIMENSIONS APPLY AFTER
PLATING AND PRIOR TO THE ADDITION OF SOLID FILM LUBRICANT.

TOLERANCES .XX ,XXX ±.010 ANGLES [X.X.] [X.X.X] ±2° ±[0.8] ±[0.25] ± 03 DIMENSIONS IN [] ARE MILLIMETERS

SHUR-LOK COPORATION RVINE, CALIFORNIA 92614 FELEPHONE: (714) 474-6000

SHUR-LOK

SHUR-LOK INTERNATIONAL, S.J PETIT-RECHAIN, BELGUII TELEPHONE: (32) 87-32.07.1

LOCKNUT AND LOCKWASHER STA-LOK, SNAP-IN

SL7080

SHEET 1 OF 2

POSITIVE LOCK **LOCKNUT**

TABLE I

								-		_			_			
SIZE	LOCKNUT THREAD SIZE	FOR SHA THD MAX DIA		• 🖪	• B	C		E	F	•G	H	J REF	K	L	LOCK	CALC WEIGHT /ASSY LB
	<u></u>	MAX	MIN						MIN			NE.			REF	(Kg)
1.	.391-32	.391 [9.93]	.386 [9.80]	.812 [20.62]	.512 [13.00]	.369 [9.37]	.188 [4.78]	.190 [4.83]	.110 [2.79]	.812 [20.62]	30	.060	,160 [4.06]	.181 [4.60]	.042 [1.07]	.03 [.014]
2	.469-32	.469 [11.91]	.462 [11.73]	.875 [22.23]	.606 [15.39]	.390 [9.91]	.188 [4.78]	.190 [4.83]	.110 [2.79]	.875 [22.23]	36	.060 [1.52]	.160 [4.06]	.202 [5.13]	.063 [1.60]	.04 [.018]
3	.586-32	.586 [14.88]	.581 [14.76]	1.000 [25.40]	,730 [18.54]	.421 [10,69]	.219 [5.56]	.190 [4.83]	.110 [2.79]	1.000 [25.40]	46	.060 [1.52]	.160 [4.06]	.202 [5.13]	.063 [1.60]	.05 [.023]
4	.664-32	.664 [16.87]	.659 [16.74]	1,125 [28,58]	.856 [21.74]	.439 [11.15]	.219 [5.56]	.190 [4.83]	.110 [2.79]	1.125 [28.58]	52	.060 [1.52]	.160 [4.06]	.220 [5.59]	.081 [2.06]	.07 [.032]
5	.781-32	.780 [19.81]	.775 [19.69]	1.250 [31.75]	.930 [23.62]	.470 [11.94]	.250 [6.35]	.190 [4.83]	.110 [2.79]	1.250 [31.75]	61	.060 [1.52]	.160 [4.06]	.220 [5.59]	.081 [2.06]	.08 [.036]
6	.969-32	.967 [24.56]	.962 [24.43]	1.437 [36.50]	1.168 [29.67]	.470 [11.94]	.250 [6.35]	.190 [4.83]	.110 [2.79]	1.437 [36.50]	76	.060 [1.52]	.160 [4.06]	.220 [5.59]	.081 [2.06]	.10 [.045]
7	1,173-18	1.173 [29.79]	1.168 [29.67]	1.688 [42.88]	1.418 [36.02]	.522 [13,26]	.281 [7.14]	.250 [6.35]	.110 [2.79]	1.688 [42.88]	93	.060 [1.52]	.220 [5.59]	.241 [6.12]	.096 [2.44]	.14 [.064]
8	1.376-18	1.376 [34,95]	1.371 [34.92]	1.875 [47.63]	1.637 [41.58]	.522 [13.26]	.281 [7.14]	.250 [6.35]	.110 [2.79]	1.875 [47.63]	109	.060 [1.52]	.220 [5.59]	.241 [6.12]	.096 [2.44]	.17 [.077]
9	1,563-18	1.563 [39.67]	1.558 [39.57]	2.062 [52.37]	1.824 [46.33]	.522 [13.26]	.281 [7.14]	.250 [6. 35]	.110 [2.79]	2.062 [52.37]	124	.060	.220 [5.59]	.241 [6.12]	.096 [2.44]	.21 [.095]
10	1.767-18	1,767 [48.88]	1.762 [44.75]	2.250 [57.15]	2.043 [51.89]	.553 [14.05]	.312 [7.92]	.250 [6.35]	.110 [2.79]	2.250 [57.15]	140	.060 [1,52]	.220 [5.59]	.241 [6.12]	.096 [2.44]	.25 [.113]
11	1.967-18	1.967 [49.96]	1.962 [49.83]	2.500 [63.50]	2.230 [56.64]	.577 [14.66]	.312 [7.92]	.250 [6.35]	.110 [2.79]	2.500 [63.50]	156	.065	.220 [5.59]	.265 [6.73]	.105 [2.67]	.31 [.141]
12	2.157-18	2.155 [54.74]	2.150 [54.61]	2.750 [69.85]	2.480 [62.99]	.577 [14.66]	.312	.250 [6.35]	.110 [2.79]	2.750 [69.85]	171	.065 [1.65]	.220 [5.59]	.265 [6.73]	.105 [2.67]	.38 [.172]
13	2.360-18	2.360 [59.94]	2.355 [59.82]	2.937 [74.60]	2.668 [68.28]	.609 [15.47]	.344 [8.74]	.250 [6.35]	.110 [2.79]	2.937 [74.60]	188	.065	.220 [5.59]	.265 [6.73]	.105 [2.67]	.43 [.195]
14	2.548-18	2.548 [64.72]	2.543 [64.59]	3.125 [79.38]	2.856 [72.54]	.609 [15.47]	.344 [8.74]	.375 [9.53]	.110 [2.79]	3.125 [79.38]	203	.065 [1.65]	.345 [8.76]	.265 [6.73]	.105 [2.67]	.45 [.204]
15	2.751-18	2.751 [69.88]	2.746 [69.75]	3.375 [85.73]	3.074 [78.08]	.624 [15.85]	.344 [8.74]	.375 [9.53]	.125 [3.18]	3.375 [85.73]	219	.070 [1.78]	.345 [8.76]	.280 [7.11]	.125 [3.18]	.53 [.240]
16	2.933-12	2,930 [74,42]	2.925 [74.30]	3.562 [90.47]	3.356 [85.24]	.655 [16.64]	.375 [9.53]	.375 [9.53]	.125 [3.18]	3.562 [90.47]	233	.070 [1.78]	.345 [8.76]	.280 [7.11]	.125 [3.18]	.60 [.272]
168	2.933-12 BUTTRESS	2.930 [74.42]	2.925 [74.30]	3,562 [90,47]	3.356 [85.24]	.655 [16.64]	.375 [9.53]	.375 [9.53]	.125 [3.18]	3.562 [90.47]	233	.070 [1.78]	.345 [8.76]	.280 [7.11]	.125 [3.18]	.60 [.272]
17	3,137-12	3.137 [79.68]	3.132 [79.55]	3.906 [99.21]	3.574 [90.78]	.655 [16.64]	.375 [9.53]	.375 [9.53]	.125 [3.18]	3.906 [99.21]	250	.070 [1.78]	.345 [8.76]	.280 [7.11]	.125 [3.18]	.64 [.290]
18	3.340-12	3,340 [84.84]	3.335 [84.71]	4.125 [104.78]	3.793 [96.34]	.655 [16.64]	.375 [9.53]	.375 [9.53]	.125 [3.18]	4.125 [104.78]	266	.070 [1.78]	.345 [8.76]	.280 [7.11]	.125 [3.18]	.67 [.303]
19	3.527-12	3.527 [89.59]	3,522 [89.46]	4.312 [109.52]	3.930 [99.82]	.655 [16.64]	.375 [9.53]	.375 [9.53]	.125 [3.18]	4.312 [109.52]	281	.070 [1.78]	.345 [8.76]	.280 [7.11]	.125 [3.18]	.71 [.322]
20	3.730-12	3,730 [94,74]	3.725 [94.62]	4.531 [115.09]	4.199 [106.65]	.655 [16.64]	.375 [9.53]	.375 [9.53]	.125 [3.18]	4.531 [115.09]	297	.070 [1.78]	.345 [8.76]	.280 [7.11]	.125	.78 [.354]

_			
- 1	0	E-	17
100	0		3.1

MATL	MATERIAL								
-	STEEL 4130 PER AMS 6370 OR AMS 6371								
С	CRES 303 PER ASTM-A-581 OR ASTM-A-582								
CA	CRES A286 PER AMS 5737								
N	INCONEL 718 PER AMS 5662								

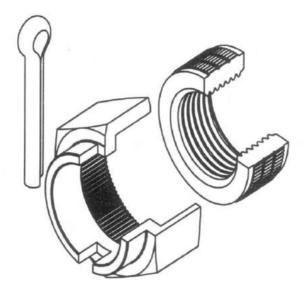
FINISH	FINISH
F	BLACK OXIDE PER MIL-C-13924
P	CAD PLATE PER QQ-P-416, TYPE II , CLASS 2
NONE	PASSIVATE PER QQ-P-35
FM	BLACK OXIDE PER MIL-C-13924 AND DRI-FILM LUBE PER MIL-L-46010, TYPE I
NF	NO FINISH

METRIC SIZES AVAILABLE ON REQUEST

INLESS OTHERWISE SPECIFIED
INTERPRET DIMENSIONS & TOLERANCES PER
ANSI 114 SM ALL DIMENSIONS APPLY AFTER
PLATING AND PRIOR TO THE ADDITION OF SOLID
FILM LUBRICANT. 125 [3,2]
ALL SURFACES
TOLERANCES FILM LUBRICANT. 125 (3.2) ALL SURFACES TOLERANCES XX XXX ANGLES [X.X.] [X.X.X] ±.03 ±.010 ±2" ±(0.8] ±(0.25] DIMENSIONS IN [| ARE MILLIMETERS

SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000

SHUR-LOK


SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11

SL7080

LOCKNUT AND LOCKWASHER STA-LOK, SNAP-IN

SHEET 2 OF 2

STA-LOK, COTTER KEY

FEATURES AND BENEFITS

- Positive Mechanical Lock that is not dependent on lubricants or plating for repeatability.
- Achieves precise preload serrations provide adjustment that eliminates back-off or over-torque.
- Typically interchangeable with most castellated nuts.
- External serrations on nut mates with internal serrations of cap.
- Serration clearance for ease of cap installation and removal.
- Can be designed in various wrenching configurations.
- Use sealant for applications with minor vibration.
- Free-running nut minimizes thread damage on mating part.

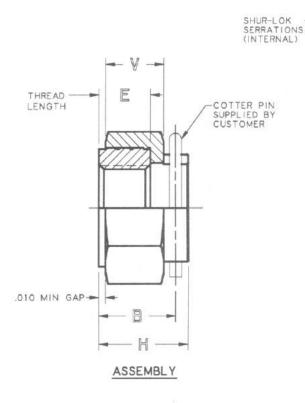
APPLICATIONS

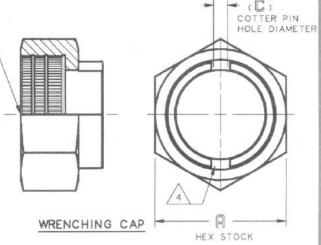
Where achieving precise preload is critical and castellated nuts cannot provide adequate adjustment.

INSTALLATION SHAFT/BOLT SERRATIONS

Hex-cap is first used to thread and wrench serrated nut, then remounted to align it's slots with keyhole in shaft Cotter key is then fitted to lock assembly. Broaching serrations on shaft not required, as nut is locked with cotter pins. For installation & removal refer to TSB0005.

SERRATIONS - CLEARANCE OR INTERFERENCE FIT


Clearance fit is provided by Shur-Lok.


THREAD SIZE

.312 inch and larger.

Metric sizes available on request.

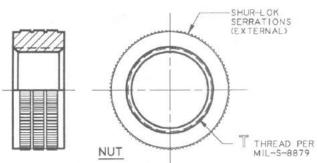


TABLE 1

DASH NO.	T THREAD	HEX	8	C		H	V	COTTER PIN MS24665 REF	APPROX. WEIGHT /100 PCS LB [Kg]
5	.3125-24	.625 [15.88]	.377 [9.58]	.109 [2.77]	.195 [4.95]	.485 [12.32]	.258 [6.55]	-302	2.5 [1.1]
6	.3750-24	.688 [17.48]	.400 [10.16]	109 [2.77]	.227	.508 [12.90]	.281 [7.14]	-302	3.1 [1.4]
7	.4375-20	.812 [20.63]	.424 [10.77]	.109 [2.77]	.260	.532 [13.51]	.305 [7.75]	-302	4.9 [2.2]
8	.5000-20	.875 [22.23]	.538 [13.67]	.141 [3.58]	.323	.675 [17.15]	.386 [9.80]	-372	6.5 [2.9]
9	.5625-18	1.000 [25.40]	.538 [13.67]	.141 [3.58]	.324 [8.23]	.675 [17.15]	.387 [9.83]	-372	8.8 [4.0]
10	.6250-18	1.125 [28.58]	.694 [17.63]	.203. [5.16]	.387 [9.83]	.865 [21.97]	.481 [12.22]	-515	13.6 [6.2]
12	.7500-16	1.312	.734 [18.64]	.203 [5.16]	.446 [11.33]	.905 [22.99]	.521 [13.23]	-515	20.2 [9.2]
14	.8750-14	1.500	.817 [20.75]	.203	.510 [12.95]	.988 [25.10]	.604 [15.34]	-515	28.2 [12.8]

NOTES-

- 1. MATERIAL: CRES 17-4PH PER AMS 5643 OR EQUIV.
- 2. HEAT TREAT COND H-1025 OR H-1100 PER MIL-H-6875. TENSILE TESTING NOT REQD. VERIFICATION OF UTS BY ROCKWELL HARDNESS TESTING WITH CORRELATION TO AMS 2759/3.
- 3. FINISH

NUT - SILVER PLATED
PER AMS 2410 OR
AMS 2411 ENTIRE
NUT OR THREADS
ONLY, MANUFACTURE'S
OPTION.

CAP - PASSIVATE PER ASTM A967.

1997

SEP

8

0

ZO

REVISIO

SURFACE 250 [6.3] RMS IN SLOTTED AREAS.

EXAMPLE OF PART CODING:

DASH NUMBER SIZE (SEE TABLE I BASIC PART NO.

METRIC SIZES AVAILABLE ON REQUEST

UNLESS OTHERWISE SPECIFIED
INTERPRET DIMENSIONS & TOLERANCES PER
ANSI Y14,5M. ALL DIMENSIONS APPLY AFTER
PLATING AND PRIOR TO THE ADDITION OF SOLID
FILM LUBRICANT. 125 3,21
ALL SURFACES

FILM LUBRICANT. 125 [3,2] ALL SURFACES

TOLERANCES

XX XXX ANGLES [X.X.] [X.X.]

±.09 ±.010 ±2" ±[0.8] ±[0.25]

DIMENSIONS IN [| ARE MILLIMETERS

SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000

SHUR-LOK

SHUR-LOK INTERNATIONAL, S.A PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11

LOCKNUT —STA-LOK, PRECISE ADJUSTING

SL 7458

SHEET 1 OF 1

STA-LOK, KEWAY

FEATURES AND BENEFITS

- Positive mechanical lock that is not dependent on lubricants or plating for repeatability.
- Achieves precise preload serrations provide adjustment that eliminates back-off or overtorque.
- ▶ Eliminates sheet metal tab and cup washers that can cause foreign object damage problems or preload loss sometimes associated with this type of soft washers.
- Internal keyed lug on washer mates with shaft keyway.
- Internal serrations of nut mates with external serrations of washer.
- Split ring engages internal nut groove for positive retention.
- Split ring is preassembled to serrated washer.
- Can be designed in various wrenching configurations
- Free-running nut minimizes thread damage on mating part.

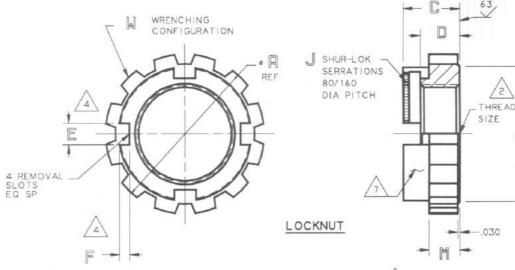
APPLICATIONS

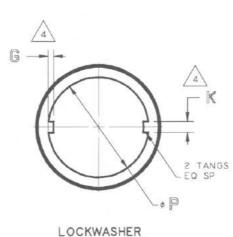
- Retrofit keyed washers where precise preload must be achieved.
- New designs where keying shafts is preferred over serrating shafts.
- Where achieving precise preload is critical.

SHAFT/BOLT SERRATIONS

Broaching serrations of shaft not required, as nut is locked with keyways.

SERRATIONS - CLEARANCE OR INTERFERENCE FIT


Clearance fit.


THREAD SIZE

.500 inch and larger.

Metric sizes available on request.

· B REF

H REF LOCKRING SHUR-LOK SERRATIONS

NOTES:

LOCKWASHER WITH LOCKRING TO BE INSTALLED INTO LOCKNUT AFTER ALIGNMENT WITH PREPARED KEYSLOT ON SHAFT.

THREAD PER MIL-S-8879, CLASS 3B (SEE TABLE 1).

AXIAL TENSILE STRENGTH = 0.65 X FTU X NUT SHEAR AREA. SURFACES 250 IN AREA INDICATED.

MATERIAL HEAT TREAT AND FINISH:

LOCKNUT -SEE TABLE II

80/160 DIA PITCH

LOCKWASHER - CRES A286 PER AMS 5737, 140 KSI MIN PASSIVATE PER ASTM A967 AND DRY FILM LUBRICANT PER AS5272 TYPE I.

LOCKRING -

CRES 302 PER ASTM A313 - SPRING TEMPER. OR CRES 17-7PH PER AMS 5678,

PASSIVATE PER ASTM A967.

SEE EXAMPLE OF PART CODING FOR ASSEMBLY AND LOCKNUT. ADD MATERIAL CODE SUFFIX "CA" OR "N" TO REQUIRED PART NUMBER

AS SHOWN. EXAMPLE SL7620-12CA OR SL7620-20N.

LASER MARK SHUR-LOK ASSEMBLY PART NUMBER IN AREA INDICATED.

METRIC SIZES AVAILABLE ON REQUEST

UNLESS OTHERWISE SPECIFIED
INTERPRET DIMENSIONS & TOLERANCES PER
ANSI Y14.5M. ALL DIMENSIONS APPLY AFTER
PLATING AND PRIOR TO THE ADDITION OF SOLID FILM LUBRICANT. 125 [3,2] TOLERANCES .XXX ±.010 ANGLES [X.X.] [X.X.X ±2° ±[0.8] ±[0.25] ±[0.25]

DIMENSIONS IN | | ARE MILLIMETERS

±.03

EXAMPLE OF PART CODING

LOCKNUT MATERIAL,

BASIC PART NUMBER

ASSEMBLY PART NUMBER.

(SEE TABLE II)

(SEE TABLE I)

SL7620 -20 CA

SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000

SHUR-LOK

SHUR-LOK INTERNATIONAL, S.A PETIT-RECHAIN, BELGUIN TELEPHONE: (32) 87-32.07.1

SL 7620

199

SEP

04

U

S O

S

LOCKNUT - KEY-FAST

SHEET 1 OF 2

TABLE I

ASSEMBLY	/2	• A	φ B	C	D			NUMBER	M	AXIAL TENSILE 3		
PART NUMBER	THREAD SIZE	REF	REF					OF SERRS		СА	Ν	
SL7620-6	.3750-24 UNJF	1.037-1.049	.908	.390	.230	.150	.070	54	.130	15,200	19,600	
SL7620-8	.5000-20 UNJF	1.185-1.197	1.038	.440	.260	.150	.090	64	.160	24,000	30,000	
SL7620-10	.6250-18 UNJF	1.333-1.345	1.169	.500	.300	.190	.110	74	.205	35,000	46,200	
SL7620-12	.7500-16 UNJF	1,480-1.493	1.298	.550	.330	.190	.110	84	.205	42,000	56,000	
SL7620-14	.8750-14 UNJF	1.628-1.641	1.429	.595	.375	.190	.110	94	.250	58,000	76,000	
SL7620-16	1.0000-12 UNJF	1.775-1.788	1.559	.645	.425	.190	.110	104	.300	78,000	102,000	
SL7620-18	1.1250-12 UNJF	1.924-1.937	1.690	.711	.470	.250	.142	114	.345	98,000	130,000	
SL7620-20	1.2500-12 UNJF	1.998-2.011	1.755	.766	.525	.250	.142	124	.400	124,000	163,000	
SL7620-22	1.3750-12 UNJF	2.145-2.158	1.885	.791	.550	.250	.142	134	.425	143,000	189,000	
SL7620-24	1.5000-12 UNJF	2.293-2.307	2.016	.791	.550	.250	.142	144	.425	156,000	207,000	
SL7620-26	1.6250-12 UNJ	2.440-2.454	2.146	.791	.550	.250	.142	154	.425	170,000	225,000	
SL7620-28	1.7500-12 UNJ	2.589-2.603	2.276	.791	.550	.250	.142	164	.425	184,000	242,000	

TABLE I CONTINUED

WRENCHING CONFIGURATION	LOCKNUT PART NUMBER	LOCKWASHER PART NUMBER	LOCKRING PART NUMBER	G ±.005	H	K ±.003	L	φ P ±.005
MS33787-28	SLN7620-6	SLW7620-6	SLR7620-6	.060	.060	.060	.160	.400
MS33787-32	SLN7620-8	SLW7620-8	SLR7620-8	.065	.060	.080	.180	.525
MS33787-36	SLN7620-10	SLW7620-10	SLR7620-10	.068	.050	.110	.200	.650
MS33787-40	SLN7620-12	SLW7620-12	SLR7620-12	.070	.060	.110	.220	.770
MS33787-44	SLN7620-14	SLW7620-14	SLR7620-14	.075	.060	.110	.220	.895
MS33787-48	SLN7620-16	SLW7620-16	SLR7620-16	.083	.060	.110	.220	1.020
MS33787-52	SLN7620-18	SLW7620-18	SLR7620-18	.083	.060	.146	.241	1.145
MS33787-54	SLN7620-20	SLW7620-20	SLR7620-20	.083	.060	.146	.241	1.270
MS33787-58	SLN7620-22	SLW7620-22	SLR7620-22	.083	.060	.146	.241	1.395
MS33787-62	SLN7620-24	SLW7620-24	SLR7620-24	.083	.060	.146	.241	1.520
MS33787-66	SLN7620-26	SLW7620-26	SLR7620-26	.083	.060	.146	.241	1.645
MS33787-70	SLN7620-28	SLW7620-28	SLR7620-28	.083	.060	.146	.241	1.770

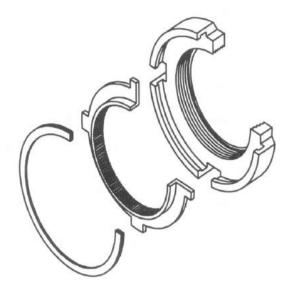
TABLE II FOR LOCKNUT ONLY

MATERIAL CODE	MATERIAL	HEAT TREAT	FINISH
СА	A286 PER AMS 5737 140 KSI MIN	NONE	PASSIVATE PER ASTM A967 DRY FILM LUBRICANT PER ASS272 TYPE I
Ν	INCONEL 718 PER AMS 5662	AGE PER AMS 5663 185 KSI MIN	DRY FILM LUBRICANT PER ASS272 TYPE I

METRIC SIZES AVAILABLE ON REQUEST

UNLESS OTHERWISE SPECIFIED INTERPRET DIMENSIONS & TOLERANCES PER ANSI 114-5M. ALL DIMENSIONS APPLY AFTER PLATING AND PRIOR TO THE ADDITION OF SOLID FILM LUBRICANT. 125 [3.2] ALL SURFACES TOLERANCES

SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000


SHUR-LOK

SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11

SL7620

LOCKNUT -KEY-FAST

STA-LOK, SPIRAL POSITIVE LOCK

FEATURES AND BENEFITS

- Positive mechanical lock that is not dependent on lubricants or plating for repeatability.
- Achieves precise preload-serrations provide adjustment that eliminates back-off or overtorque.
- Maintains fatigue strength at reduced weight. External serrations in the nonload carrying portion of the thread. Eliminates keyways allowing reduction of shaft wall thickness or diameter.
- Key way stress concentrations are eliminated.
- Internal serrations of washer mates with serrated shaft.
- Designed with either interference fit or clearance fit.
- External lugs of serrated washer engages slots of nut.
- Spiral retaining ring feeds into internal groove of nut to provide positive retention of washer.
- Nut, washer, and spiral retaining ring supplied as separate components.
- Can be designed in various wrenching configurations.

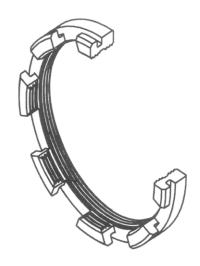
APPLICATIONS

- Interference type where there is high RPM and/or load reversals.
- Clearance type for ease of installation in nonrotating applications.
- Where achieving precise preload is critical and existing nuts cannot provide adequate adjustment.
- Where weight reduction is a priority and shaft wall thickness or diameter can be reduced.
- Where a positive mechanical lock is required.

SHAFT/BOLT SERRATIONS

Broaching serrations on shaft/bolt is required. For installation and removal of locknuts and lockwashers refer to Technical Sales Bulletin-TSB 0001.

SERRATIONS - CLEARANCE OR INTERFERENCE FIT


Customer Specified:

Interference fit recommended for high RPM applications.

Clearance fit recommended for non-rotating applications.

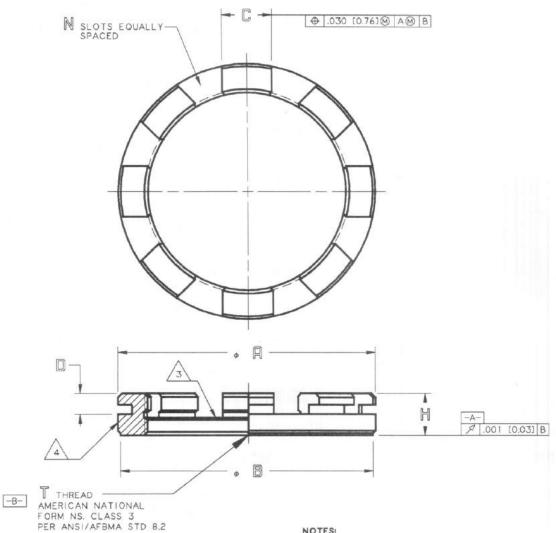
Metric sizes available on request

FACE WRENCHING METALLIC LOCK

FEATURES AND BENEFITS

- One piece design.
- High temperature capability (limited by material selected).
- ► 50 cycle reusability capable with proper plating and use of lubricants.
- Available in alloy steel and A286 materials.
- Retains locking ability even when installed on other than original shaft.
- Minimal envelope.
- Face wrenching (castellated).
- Locking feature less sensitive to high seating torque.

NOTATIONS


- Should not be used without a secondary Lubricant.
- Not recommended for keyed shafts.

THREAD SIZE

1.250 inch and larger.

Metric sizes available on request.

EXAMPLE OF PART CODING:

SL7500 - 10 - DASH NUMBER SIZE (SEE TABLE 1) - MATERIAL CODE (SEE TABLE II) - BASIC PART NO.

NOTES:

- MAGNETIC PARTICLE INSPECT PER ASTM E1444, OR FLUORESCENT PENETRANT INSPECT PER ASTM E1417.
- ALL DIAMETERS \oplus Ø.005 [0.13] \oplus B \oplus 2.

- PART AND LOT NUMBERS ELECTROCHEMICAL ETCHED OR LASER MARKED PER AS478.
- 5. FINISH: SILVER PLATE PER AMS 2410 OR AMS 2411.
- CONSULT SHUR-LOK ENGINEERING DEPARTMENT FOR OTHER MATERIALS, FINISHES OR SIZES. 6.

METRIC SIZES AVAILABLE ON REQUEST

UNLESS OTHERWISE SPECIFIED INTERPRET DIMENSIONS & TOLERANCES PER ANSI Y14.5M. ALL DIMENSIONS APPLY AFTER PLATING AND PRIOR TO THE ADDITION OF SOLID FILM LUBRICANT. 125 [3.2] ALL SURFACES

TOLERANCES | XXX | ANGLES | [X.X.] | [X.X.X] | 3 ±.010 ±2° ±[0.8] ±[0.25] | DIMENSIONS IN [| ARE MILLIMETERS XX XXX ±.03 ±.010

SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000

SHUR-LOK

SHUR-LOK INTERNATIONAL, S.A PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11

LOCKNUT -**FACE WRENCHING FEATURE** **SL7500**

SHEET 1 OF 2

TABLE I

DASH NO.	THREAD	+.000 005 [+0.00] [-0.13]	+.000 005 [+0.00] [-0,13]	+.000 010 [+0.00] [-0.25]		H	N	APPROX. WEIGHT 100 PCS LBS [Kg]
1	2.157-18	2.711 [68.85]	2.656 [67.46]	.540 [13.72]	.222 [5.64]	.449 [11.40]	8	19.63 [8.90]
2	2.360-18	2.895 [73.53]	2.840 [72.14]	.565 [14.35]	.222 [5.64]	.449 [11,40]	8	20.75
3	2.548-18	3.118 [79.20]	2.840 [72.14]	.616. [15.65]	.222 [5.64]	.449 [11.40]	8	23.33 [10.58]
4	2.751-18	3.368 [85.55]	3.313 [84.15]	.660 [16.76]	.222 [5.64]	.449 [11.40]	8	26.71 [12.12]
5	2.933-12	3.618 [91.90]	3.563 [90.50]	.710 [18.03]	.333	.671 [17.04]	8	47.80 [21.63]
6	3.137-12	3.899 [99.03]	3.844 [97.64]	.765 [19.43]	.333	.671 [17.04]	8	55.38 [25.12]
7	3.340-12	4.086 [103.78]	4.031 [102.39]	.540 [13.72]	.333	.671 [17.04]	12	57.37 [26.02]
8	3.527-12	4.265 [108.33]	4.210 [106.93]	.565 [14.35]	.333	.671 [17.04]	12	60.13 [27.27]
9	3.730-12	4,425 [112.40]	4.370 [111.0]	.592 [15.04]	.333	.671 [17.04]	12	60.43 [27.41]
10	3.918-12	4.675 [118.75]	4.620 [117.35]	.616 [15.65]	.333	.671 [17.04]	12	67.66 [30.69]
1.1	4.122-12	4.895 [124.33]	4.840 [122.94]	.642 [16.31]	.333	.671 [17.04]	12	72.14 [32.72]
12	4.325-12	5.135 [130.43]	5.080 [129.03]	.660 [16.76]	.333	.671 [17.04]	12	78.34 [35.53]

TABLE II

CODE	MATERIAL
-	ALLOY STEEL 4130 PER MIL-S-6758 OR AMS 6370, AMS 6371 (TUBING) Ftu = 150 Ksi min.
С	A286 CRES PER AMS 5737

TABLE III - PERFORMANCE DATA

DASH NO.	THREAD	MAX LOCK	ING TORQUE	MIN LOCKI	NG TORQUE
	IHKLAU	in-lb	N-m	in-lb	N-m
1	2.157-18	805	[91]	120	[14]
2	2.360-18	860	[97]	130	[15]
3	2.548-18	895	[101]	138	[16]
4	2.751-18	950	[107]	145	[16]
5	2.933-12	985	[111]	155	[18]
6	3.137-12	1030	[116]	160	[18]
7	3.340-12	1070	[121]	170	[19]
8	3.527-12	1100	[124]	178	[20]
9	3.730-12	1145	[129]	185	[21]
10	3.918-12	1175	[133]	190	[22]
11 -	4.122-12	1200	[136]	200	[23]
12	4.325-12	1230	[139]	205	[23]

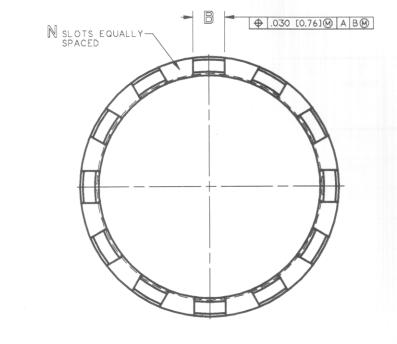
METRIC SIZES AVAILABLE ON REQUEST

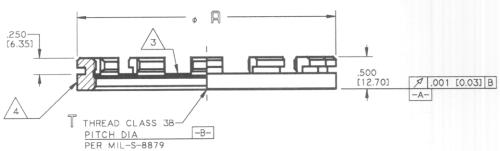
UNLESS OTHERWISE SPECIFIED
INTERPRET DIMENSIONS & TOLERANCES PER
ANSI 1/14.5M. ALL DIMENSIONS APPLY AFTER
PLATING AND PRIOR TO THE ADDITION OF SOLID
TOLERANCES

ALL SURFACES
SHUR-LOK COPORATION
IRVINE, CALIFORNIA 92614
TELEPHONE: (714) 474-6000
TELEPHONE: (714) 474-6000

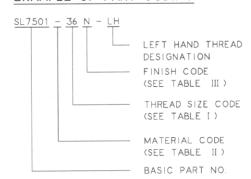
SHUR-LOK

SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11


LOCKNUT -**FACE WRENCHING FEATURE**


SHEET 2 OF 2

SEP 8


REVISION (D)

EXAMPLE OF PART CODING:

NOTES.

- MAGNETIC PARTICLE INSPECT PER ASTM E1444, OR FLUORESCENT PENETRANT INSPECT PER ASTM E1417.
- 2. ALL DIAMETERS ⊕ Ø .005 [0.13] ⊛ B ⊛
- SURFACE 250 [6.3] RMS IN AREA INDICATED.
 - PART AND LOT NUMBERS ELECTROCHEMICAL ETCHED OR LASER MARKED PER AS478.
 - 5. CONSULT SHUR-LOK TECHNICAL SERVICES DEPARTMENT FOR OTHER MATERIALS, FINISHES OR SIZES.

METRIC SIZES AVAILABLE ON REQUEST

INTERPRET DIMENSIONS & TOLERANCES PER ANSI Y145M. ALL DIMENSIONS APPLY AFTER PLATING AND PRIOR TO THE ADDITION OF SOLID FILM LUBRICANT. 125 [3,2] ALL SURFACES TOLERANCES

SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000

SHUR-LOK

SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11

LOCKNUT, BEARING FACE WRENCHING

SL 7501

SHEET 1 OF 2

LOCKNUT — FACE WRENCHING -

TABLE 1:

SIZE	T	ø A	B	N	APPROX WEIGHT
CODE	THREAD	+.000 005 [+0.00] [-0.13]	+.000 010 [+0.00] [-0.25]		PER 100 PCS LBS [Kg]
25	1.5625-16UNJ	1.876 [47.65]	.484 [12.29]	6	9.97 [4.52]
28	1.7500-16UNJ	2.137 [54.28]	.514 [13.06]	6	12.44 [5.64]
32	2.0000-16UNJ	2.411 [61.24]	.438 [11.13]	8	14.90 [6.76]
36	2.2500-16UNJ	2.683	.490 [12.45]	8	17.46 [7.92]
40	2.5000-16UNJ	2.955 [75.06]	.540 [13.72]	8	20.19
44	2.7500-16UNJ	3.225 [81.92]	.592 [15.04]	8	23.00 [10.43]
48	3.0000-16UNJ	3.493 [88.72]	.642 [16.31]	8	25.84 [11.72]
52	3.2500-16UNJ	3.761 [95.53]	.464 [11.79]	12	28.83 [13.08]
56	3.5000-16UNJ	4.027 [102.29]	.498 [12.65]	12	31.85 [14.42]
60	3,7500-16UNJ	4.291 [109.00]	.532 [13.51]	12	34.85 [15.81]
64	4.0000-16UNJ	4.555 [115.70]	.565 [14.35]	12	37.97 [17.22]
68	4.2500-16UNJ	4.816 [122.33]	.628 [15.95]	12	43.41 [19.69]

TABLE II

CODE	MATERIAL
-	ALLOY STEEL, 4130 PER MIL-S-6758 OR AMS 6370, AMS 6371 (TUBING) Ftu = 150 KSI MIN.
С	CRES A286 PER AMS5737

TABLE III :

CODE	FINISH							
NO C ODE	SILVER PLATE .0002 [.005] MIN THICKNESS PER AMS 2411							
N	NEDOX SF-2 ANTI-GALLANT COATING. .00020006 (.005015) THICKNESS ON ALL SURFACES. (MFR GENERAL MAGNAPLATE)							

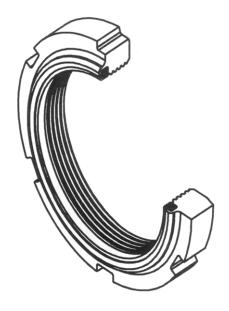
TABLE IV PERFORMANCE DATA

SIZE	T	MAX LOCK	ING TORQUE	MIN LOCKI	NG TORQUE
CODE	THREAD	in-lb	N-m	in-lb	N-m
25	1.5625-16UNJ		1		
28	1.7500-16UNJ				
32	2.0000-16UNJ	765	[86]	110	[14]
36	2.2500-16UNJ	825	[93]	120	[14]
40	2.5000-16UNJ	890	[101]	135	[15]
44	2.7500-16UNJ	950	[107]	145	[16]
48	3.0000-16UNJ	1000	[113]	155	[18]
52	3.2500-16UNJ	1050	[119]	165	[19]
56	3.5000-16UNJ	1100	[124]	175	[20]
60	3.7500-16UNJ	1150	[130]	185	[21]
64	4.0000-16UNJ	1200	[136]	195	[22]
68	4.2500-16UNJ				

METRIC SIZES AVAILABLE ON REQUEST

INTERPRET DIMENSIONS & TOLERANCES PER ANSI Y145M. ALL DIMENSIONS APPLY AFTER PLATING AND PRIOR TO THE ADDITION OF SOLID FILM LUBRICANT. 125 [32] ALL SURFACES TOLERANCES

SHUR-LOK


SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11

LOCKNUT, BEARING FACE WRENCHING

SL7501

SHEET 2 OF 2

(VESPEL) NON-METALLIC LOCK

FEATURES AND BENEFITS

- ► Various wrenching options:
 - Slots
 - •Holes
 - Hexagon
- ► Locking feature adaptable to various nut designs.
- Available in wide variety of materials and finishes.
- Qualified vespel material on various military programs.
- Does not externally trap dirt, debris, etc. (No slot or castellations).

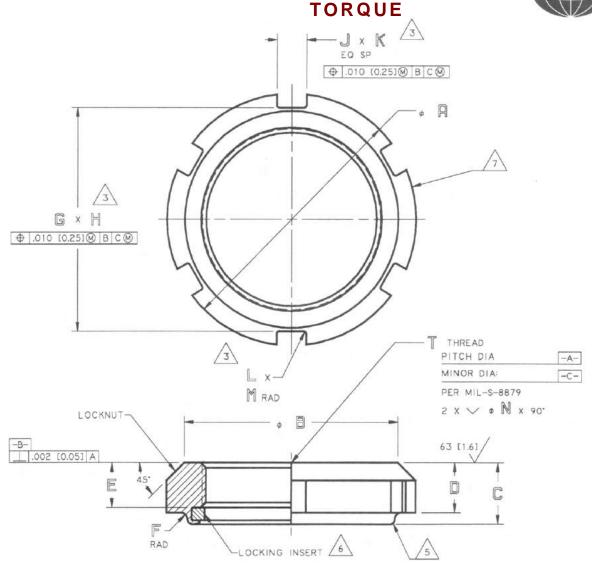
NOTATIONS

- ► Should not be used without a secondary lubricant.
- Not recommended for keyed (slotted) shafts.
- ▶ Max operating temperature 450°F.
- Locking feature performance is very sensitive to shaft variations.
- Seating torques will have a more damaging effect on reusability for vespel than on metallic locknuts.

THREAD SIZE

.250 inch and larger.

Metric sizes available on request.


SEP

8

В

SION

LOCKNUT —PREVAILING

NOTES:

- MAGNETIC PARTICLE INSPECT PER ASTM E1444 OR FLUORESCENT PENETRANT INSPECT PER ASTM E1417.
- ALL DIAMETERS \$\Phi\$ \Ø.005 [0.13] \text{\tin}\ext{\texi}\text{\text{\text{\text{\text{\tex{\texit{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti

EXAMPLE OF PART CODING:

SL7515 EG 24 THD SIZE CODE SEE TABLE I MATERIAL AND FINISH CODE SEE TABLE II BASIC PART NO.

SURFACE 250 [6.3] RMS IN AREA INDICATED.

WHEN TESTED ON MANDREL WITH UNJ-3A THREADS PER MIL-S-8879 LUBRICATED WITH OIL PER MIL-L-7808 OR MIL-L-23699. TORQUE REQUIREMENTS PER TABLE III MUST BE MET.

ABSENCE OF SILVER PLATE PERMITTED IN ROLLOVER AREA. ANY FLAKING REMOVED PRIOR TO SHIPMENT.

SPLIT LOCKRING MFG OPTION.

PART NUMBER MARKED WITH SHUR-LOK PART NUMBER (LASER MARKING MFG OPTION) SPLIT MARKING PERMISSIBLE.

CONSULT SHUR-LOK TECHNICAL SERVICES DEPARTMENT FOR OTHER MATERIALS, FINISHES AND SIZES.

METRIC SIZES AVAILABLE ON REQUEST

UNLESS OTHERWISE SPECIFIED INTERPRET DIMENSIONS & TOLERANCES PER ANSI Y145M. ALL DIMENSIONS APPLY AFTER PLATING AND PRIOR TO THE ADDITION OF SOLID FILM LUBRICANT. I Z5 [3.2] ALL SURFACES TOLERANCES ALL SURFACES TOLERANCES ANGLES [X.X.] [X.X.X] ±2° ±[0.8] ±[0.25] XX XXX ±03 ±.010

DIMENSIONS IN [] ARE MILLIMETERS

SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-8000

SHUR-LOK

SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11

VESPEL LOCKING FEATURE

SL7515

1 OF SHEET

LOCKNUT -

LOCKNUT — PREVAILING = TORQUE

TABLE I

SIZE	T THREAD -16UNJ-3B	φA	ф <u>Б</u>	±.015 [±0.08]		E	F	G	Н	J	K	L	M RAD	¢ N
8	.5000	1.060	.782 [19.86]	.406 [10,31]	.326 [8.28]	.284 [7.21]	.050 [1.27]	2	.842 [21.39]	4	.125 [3.17]	8	.020 [0.51]	.530
14	.8750	1.439	1.157	.406	.326	.284 [7.21]	.050	2	1.217	4	.125 [3,17]	В	.020	.905
16	1.0000	1.565 [39.75]	1.282	.406 [10.31]	.326	.284	.050 [1.27]	2	1.342 [34.09]	4	.125	8	.020 [0.51]	1.03
18	1.1250	1.691 [42.95]	1.407 [35.74]	.406 [10.31]	.326 [8.28]	.284 [7.21]	.050 [1.27]	2	1.467 [37.26]	4	.125 [3.17]	8	.020 [0.51]	1.15
20	1.2500	1.818 [46.18]	1.532 [38.91]	.406 [10.31]	.326 [8.28]	.284 [7.21]	.050 [1.27]	2	1.592 [40.44]	4	.125	8	.020	1.28
22	1,3750	1.944	1.657	.406	.326 [82.8]	.284	.050 [1.27]	S	1.717 [43.61]	4	.125	8	.020	1.40
24	1.5000	2.070 [52.58]	1.782 [45.26]	.406 [10.31]	.326	.284	.050 [1.27]	3	1.842 [46.79]	6	.250 [6.35]	12	.020 [0.51]	1.53 [38.86
25	1.5625	2.133	1.844	.406 [10,31]	.326	.284 [7.21]	.050 [1.27]	3	1.904 [48.36]	6	.250 [6.35]	12	.020 [0.51]	1.59 [40.44
26	1.6250	2.196 [55.78]	1.907 [48.44]	.406 [10.31]	.326	.284	.050 [1.27]	3	1.967 [49.96]	6	.250 [6.35]	12	.020	1.65
28	1.7500	2.322	2.032	.406	.326	.284 [7.21]	.050 [1.27]	3	2.092 [53.14]	6	.250 [6.35]	12	.020	1.78 [45.21
32	2.0000	2.575	2.282 [57.96]	.413 [10.49]	.333	.290 [7.37]	.050	3	2.342 [59,49]	6	.250 [6.35]	12	.020	2.03 [51.56
36	2.2500	2.828	2.532 [64.311	.425 [10.79]	.345 [8.76]	.302	.050 [1.27]	3	2.592 [65.84]	6	.250 [6.35]	12	.020	2.28 [57.91
40	2.5000	3,080	2.781 [70.64]	.437	.357	.314	.050	3	2.841 [72.16]	6	.250 [6.35]	12	.020 [0.51]	2.53 [64.26
44	2.7500	3.332	3.031	.450 [11.43]	.370	.328	.050	3	3.091 [78.51]	6	.250 [6.35]	12	.020	2.78 [70.61
48	3.0000	3.585	3.281	.463	.383	.340	.050	4	3,341	8	.250	16	.020	3.03 [76.96

TABLE II

ITEM	MATL CODE	MATERIAL	HEAT TREAT	FINISH
	EG	ALLOY STEEL 4340	26-32 HRC	SILVER PLATE .0002 [.005] MIN THICKNESS PER AMS2411 ON ALL SURFACES
LOCKNUT	EK	PER AMS6414 OR AMS6415	MIL-H-6875	BLACK OXIDE PER MIL-C-13924, CL1
	FM	CRES A286 PER AMS5737	140 KSI MIN	SILVER PLATE .0002 [.005] MIN THICKNESS PER AMS2411 ON ALL SURFACES
LOCKING	-	VESPEL SP1 (DUPONT)		

METRIC SIZES AVAILABLE ON REQUEST

UNLESS OTHERWISE SPECIFIED
INTERPRET DIMENSIONS & TOLERANCES PER
ANSI Y14.5M. ALL DIMENSIONS APPLY AFTER
PLATING AND PRIOR TO THE ADDITION OF SOLID
FILM LUBRICANT. 125 [3.2]
ALL SURFACES
XX XXX ANGLES [X.X.] [X.XX]
2.03 ±.010 ±2" ±[0.8] ±[0.25]
DIMENSIONS IN [] ARE MILLIMETERS

SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000 SHUR-LOK

SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11

SHEET 2 OF 3

LOCKNUT – VESPEL LOCKING FEATURE

SL7515

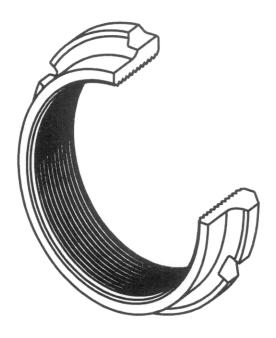
LOCKNUT —PREVAILING TORQUE

	⟨₹	MAX	MIN FIRST	MIN FIFTEENTH	MAX B	AX INSTALLATIC	ON MANDREL	BREAKAWAY TORQUES S AS DEFINED BELOW	TORQUES D BELOW		
SIZE	MANDREL THREADS -16UNJ-3A	TORQUE	BREAKAWAY	CYCLE BREAKAWAY	DIMENSIONS	TOROUE T	IONS FOR MAX INSTALLATION TORQUE TEST MANDREL	DIME	DIMENSIONS FOR TORQUE TES	Z Ž	BREAKAWAY
	PER MIL-5-8879	Z.S.	[N.m]	[N.m]	MAJOR	PITCH	MINOR	MAJOR	PITCH	MINOR	ж.
60	.5000	120	20	10	.5000	.4576	.42054278 [110.681] - [10.866]	,4906	.4576	.4205-	.4278
4	8750	370	75	35 [4.0]	.8750	.8326	.79548028 [20.203] - [20.391]	.8656	.8326 [21,148]	.7954-	.8028 [20.391]
16	1.0000	480	95 [10.7]	45 [5.1]	1.0000	.9575 [24.320]	.9203 — .9278 [23.376] — [23.566]	.9906	.9575	.9203 - - (373.51) -	.9278
8	1.1250	610	125	60 [6.8]	1.1250	1.0825	1.0452 - 1.0528 [26.548] - [26.741]	1.1156	1,0825	1,0452 —	1.0528 [26.741]
20	1.2500	750	155	7.5 [8.5]	1.2500	1.2075	1.1702 - 1.1778 [29,723] - [29,916]	1.2406	1.2075	1.1702	1.1778
22	1.3750	910	185 [20.9]	90	1.3750	1,3324	1.2951 - 1.3028 [32.896] - [33.091]	1.3656	1,3324	1,2951 -	1.3028
24	1.5000	1085	220 [24.9]	110	1.5000	1,4574	1.4201 - 1.4278 [36.071] - [36.266]	1.4906	1,4574	1.4201	1.4278
52	1.5625	1175	240	120	1.5625	1.5199	1,4826 - 1,4903 [37,658] - [37,854]	1.5531	1.5199	1.4826 [37.658]	1,4903
26	1.6250	1270	260 [29.4]	130	1,6250 [41,275]	1,5824 [40,193]	1,5451 - 1,5528 (39,246] - [39,441]	1.6156	1.5824	1.5451 [39.246]	1,5528
28	1.7500	1475 [166.6]	300	150	1,7500 [44,450]	1,7074	1.6700 - 1.6778 [42.418] - [42.616]	1,7406	1,7074	1.6700	1.6778
32	2.0000	1930	395 [44.6]	195	2,0000	1.9574 [49.718]	1.9200 — 1.9278 [48.768] — [48.966]	1.9906	1.9574 [49.718]	1.9200	1.9278
36	2.2500	2440	500	250	2,2500	2.2074 [56.068]	2.1700 - 2.1778 [55,118] - [55,316]	2.2406	2.2074	2.1700-	2,1778
40	2.5000	3015	620	310	2.5000	2.4574 [62.418]	2.4199 — 2.4278 [61,465] — [61,666]	2.4906	2.4574 [62.418]	2.4199 [61.465]	2.4278 [61.666]
44	2,7500	3645	750 [84.7]	375 [42.4]	2,7500	2.7074	2.6699 — 2.6778 [67.815] — [68.016]	2.7406	2,7074	2.6699	2.6778
48	3.0000	4340	895	445	3.0000	2.9573	2.9198 - 2.9278	2.9906	2.9573	2.9198 -	2,9278

METRIC SIZES AVAILABLE ON REQUEST

UNLESS OTHERWISE SPECIFIED INTERPRET DIMENSIONS & TOLERANCES PER ANSI 174 5M. ALL DIMENSIONS APPLY AFTER PLATING AND PRIOR TO THE ADDITION OF SOLID FILM LUBRICANT 125 [3,2] ALL SURFACES TOLERANCES

SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000


SHUR-LOK

SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11

SL 7515

SHEET 3 OF 3

CRIMP LOCK

FEATURES AND BENEFITS

- Proven and reliable locking feature.
- One piece design.
- Various wrenching options:
 - Slots
 - •Holes
 - •Hexagon
- High temperature capability (limited by material selected).
- High axial load capability.

NOTATIONS

- Should not be used without a secondary lubricant.
- Locking feature may remove shaft plating.

THREAD SIZE

• .500 to 3.00 inch.

Metric sizes available on request.

LOCKNUT -PREVAILING TORQUE - J x K /₃\ EQ SP ⊕ .010 [0.25] M B C M ⊕ .010 [0.25] ⊗ B C ⊗ T THREAD PITCH DIA. -A-MINOR DIA. -c-PER MIL-S-8879 M RAD 2 X V . N X 90. 63 [1.6] .002 [0.05] A RAD E MAX NOTES: MAGNETIC PARTICLE INSPECT PER ASTM E1444 FOR 4340 STEEL. FLUORESCENT PENETRANT INSPECT PER ASTM E1417 FOR A286 STEEL. ALL DIAMETERS \$\Phi\$ \Ø.005 [0.13] \Omega A\Omega\$ SURFACE 250 [6.3] RMS IN AREA INDICATED. PART MARKED WITH SHUR-LOK PART NUMBER (LASER MARKING MFG OPTION). SPLIT MARKING PERMISSIBLE. THIS DIAMETER DEFORMED TO PROVIDE SELF LOCKING FEATURE. EXAMPLE OF PART CODING: TOOL MARKS PERMISSIBLE. SL7610 EG 24 NOTED DIMENSION IS PRIOR TO DEFORMATION FOR SELF LOCKING FEATURE. THD SIZE CODE SEE TABLE I ATTAIN TORQUE REQUIREMENTS PER TABLE III WHEN TESTED

UNLESS_OTHERWISE_SPECIFIED
INTERPRET_DIMENSIONS & TOLERANCES PER
ANSI_Y14 SM__ALL_DIMENSIONS_APPLY_AFTER
PLATING AND PRIOR_TO THE ADDITION OF SOLID
FILM_LUBRICANT.__125 [3,2]
ALL_SURFACES

TOLERANCES TOLERANCES .XX .XXX ANGLES [X.X.] [X.X.X] XXX .XXX ±.03 ±.010

DIMENSIONS IN [] ARE MILLIMETERS

±[0.8]

±[0.25]

SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000

MATL & FINISH CODE SEE TABLE II

BASIC PART NO.

SHUR-LOR

SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11

ON MANDREL WITH UNJ-3A THREADS PER TABLE III LUBRICATED

CONSULT SHUR-LOK TECHNICAL SERVICES DEPARTMENT FOR OTHER

WITH OIL PER MIL-L-7808 OR MIL-L-23699.

MATERIALS, FINISHES AND SIZES.

SHEET 1

SL 7610

OF 3

METRIC SIZES AVAILABLE ON REQUEST

LOCKNUT -METALLIC, SELF LOCKING

LOCKNUT -PREVAILING TORQUE

TABLE [

SIZE	THREAD -16UNJ-3B	φ 🗐	φ B	±.015 [±0.38]		φ E MAX	F	G	Н	J	K	L	M RAD	Φ N
8	.5000	1,060	.782 [19.86]	.546 [10.31]	.326 [8.28]	.66.5 [16.89]	.060 [1.52]	2	.842 [21.39]	4	.125 [3.17]	8	.020 [0.51]	.530
14	.8750	1,439 [36,55]	1.157	.546 [13.87]	.326	1.040	.060 [1 . 52]	2	1.217	4	.125 [3.17]	8	.020	.90.
16	1.0000	1.565	1.282	.546 [13.87]	.326	1.165	.060	2	1.342	4	.125 [3.17]	8	.020	1.03
18	1.1250	1.691	1,407 [35,74]	.546 [13.87]	.326	1.290	.060	2	1,467 [37.26]	4	.125 [3.17]	В	.020	1.15 [29.34
20	1.2500	1.818	1.532	.546 [13,87]	.326	1.415	.060	2	1.592 [40.44]	4	.125 [3.17]	8	.020 [0.51]	1,28 [32,51
22	1.3750	1,944	1.657	.546 [13,87]	.326	1.540	.060	2	1.717	4	.125	8	.020	1.40 [35.69
24	1.5000	2.070	1.782	.766 [19.46]	.326	1.730	.120	3	1.842	6	.250 [6.35]	12	.020	1.53 [38.86
25	1.5625	2.133	1.844	.766 [19,46]	.326	1.795 [45.59]	,120 [3.05]	3	1.904 [48.36]	6	.250 [6.35]	12	.020	1.59 [40.44
26	1.6250	2.196	1.907 [48.44]	.766 [19.46]	.326	1.855 [47.12]	.120	3	1.967 [49.96]	6	.250 [6.35]	12	.020	1.65
28	1.7500	2.322	2.032	.766 [19.46]	.326	1.990	.120	3	2.092	6	.250 [6.35]	12	.020	1.78 [45.21
32	2.0000	2.575	2.282	.772	.333 [8.46]	2.230	.120	3	2.342	6	.250 [6.35]	12	.020	2.03 [51.56
36	2.2500	2.828	2.532	.785	.345	2.480	.120	3	2.592 [65.84]	6	.250 [6.35]	12	.020	2.28
40	2.5000	3.080	2.781	.798	.357	2.730	120	3	2.841 [72.16]	6	.250 [6.35]	12	020	2.53 [64.26
44	2.7500	3.332	3.031	.810	.370	2.980	.120	3	3.091 [78.51]	6	.250	12	.020	2.78
48	3.0000	3.585	3.281	.825	.383	3.230	,120	4	3.341	8	.250	16	.020	3.03

TABLE II

MATL CODE	MATERIAL	HEAT TREAT	FINISH			
	ALLOY STEEL 4340 PER AMS 6414 OR AMS 6415	26-32 HRC PER MIL-H-6875	SILVER PLATE :0002 [.005] MIN THICKNESS PER AMS 2411 ON ALL SURFACES			
FM	CRES A286 PER AMS 5737	140 KSI MIN	SILVER PLATE .0002 [.005] MIN THICKNESS PER AMS 2411 ON ALL SURFACES			

METRIC SIZES AVAILABLE ON REQUEST

INLESS OTHERWISE SPECIFIED
INTERPRET DIMENSIONS & TOLERANCES PER ANSI Y14.5M. ALL DIMENSIONS APPLY AFTER PLATING AND PRIOR TO THE ADDITION OF SOLID TRUM LUBRICATY 125 [32] ALL SURFACES
TOLERANCES

SHUR-LOK COPORATION
SHUR-LOK COPORATION
TELEPHONE: (714) 474-6000
TELEPHONE: (714) 474-6000

SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11

LOCKNUT -METALLIC, SELF LOCKING SL7610

SHEET 2 OF 3

LOCKNUT — PREVAILING TORQUE

TABLE III TOROUE PERFORMANCE

TABLE III TORQUE PERFORMANCE									
SIZE CODE	MANDREL THREADS -16UNJ-3A PER	MAX INSTL TORQUE IN-LB [N.m]	MIN FIFTEENTH CYCLE BREAKAWAY TORQUE IN-LB [N.m]	MAX INSTALLATION AND MIN BREAKAWAY TORQUES TO BE MEASURED ON MANDRELS AS DEFINED BELOW					
				DIMENSIONS FOR MAX INSTALLATION DIMENSIONS FOR MIN BREAKAWAY TORQUE TEST MANDREL					
	MIL-S-8879			MAJOR DIA +.0000 0005 [+0.000] [-0.013]	PITCH DIA +.0000 0005 [+0.000] [-0.013]	MINOR DIA	MAJOR DIA +.0005 0000 [+0.013] [-0.000]	PITCH DIA +.0005 0000 [+0.013] [-0.000]	MINOR DIA
8	.5000	450 [50.8]	50 [5.6]	.5000 [12.700]	.4594 [11.669]	.42054278 [10.681] - [10.866]	.4906 [12.461]	.4559 [11.580]	.4205 — .4278 [10.681] — [10.866]
14	.8750	530 [59.9]	64 [7.2]	.8750 [22.225]	.8344 [21.194]	.79548028 [20.203] - [20.391]	.8656 [21.986]	.8308 [21.285]	.79548028 [20.203] - [20.391]
16	1.0000	560 [63.3]	70 [7.9]	1.0000 [25.400]	.9594 [24.369]	.9203 — .9278 [23.376] — [23.566]	.9906 [25.161]	.9557 [24.275]	.92039278 [23.376] - [23.566]
18	1.1250	585 [66.1]	75 [8.5]	1.1250 [28.575]	1.0844 [27.544]	1.0452 — 1.0528 [26.548] — [26.741]	1.1156 [28.336]	1.0807 [27.450]	1.0452 - 1.0528 [26.548] - [26.741]
20	1.2500	615 [69.5]	80 [8.5]	1.2500 [31.750]	1.2094 [30.719]	1.1702 — 1.1778 [29.723] — [29.916]	1.2406 [31.511]	1.2056 [30.622]	1.1702 — 1.1778 [29.723] — [29.916]
22	1.3750	640 [72.3]	85 [9.6]	1.3750 [34.925]	1.3344 [33.894]	1.2951 - 1.3028 [32.896] - [33.091]	1.3656 [34.686]	1.3306 [33.797]	1.2951 - 1.3028 [32.896] - [33.091]
24	1.5000	690 [78.0]	90 [10.2]	1.5000 [38.100]	1.4594 [37.069]	1.4201 - 1.4278 [36.071] - [36.266]	1.4906 [37.861]	1.4555 [36.970]	1.4201 — 1.4278 [36.071] — [36.266]
. 25	1.5625	715 [80.8]	93 [10.5]	1.5625 [39.688]	1.5219 [38.656]	1.4826 — 1.4903 [37.658] — [37.854]	1.5531 [39.449]	1.5180 [38.557]	1.4826 — 1.4903 [37.658] — [37.854]
26	1.6250	740 [83.6]	95 [10.7]	1.6250 [41.275]	1.5844 [40.244]	1.5451 - 1.5528 [39.246] - [39.441]	1.6156 [41.036]	1.5805 [40.145]	1.5451 — 1.5528 [39.246] — [39.441]
28	1.7500	790 [89.3]	100 [11.3]	1.7500 [44.450]	1.7094 [43.419]	1.6700 - 1.6778 [42.418] - [42.616]	1.7406 [44.211]	1.7054 [43.317]	1.6700 — 1.6778 [42.418] — [42.616]
32	2.0000	885 [100.0]	110 [12.4]	2.0000 [50.800]	1.9594 [49.769]	1.9200 — 1.9278 [48.768] — [48.966]	1.9906 [50.561]	1.955 4 [49.667]	1.9200 — 1.9278 [48.768] — [48.966]
36	2.2500	980 [110.7]	120 [13.6]	2.2500 [57.150]	2.2094 [56.119]	2.1700 - 2.1778 [55.118] - [55.316]	2.2406 [56.911]	2.2053 [56.015]	2.1700 - 2.1778 [55.118] - [55.316]
40	2.5000	1075 [121.5]	1 3 5 [15.3]	2.5000 [63.500]	2.4594 [62.469]	2.4199 - 2.4278 [61.465] - [61.666]	2.4906 [63.261]	2.4553 [62.365]	2.4199 — 2.4278 [61.465] — [61.666]
44	2.7500	1175 [132.8]	145 [16.4]	2.7500 [69.850]	2.7094 [68.819]	2.6699 - 2.6778 [67.815] - [68.016]	2.7406 [69.611]	2.7053 [68.720]	2.6699 - 2.6778 [67.815] - [68.016]
48	3.0000	1300 [146.9]	155 [17.5]	3.0000 [76.200]	2.9594 [75.169]	2.9198 — 2.9278 [74.163] — [74.366]	2.9906 [75.961]	2.9552 [75.062]	2.9198 — 2.9278 [74.163] — [74.366]

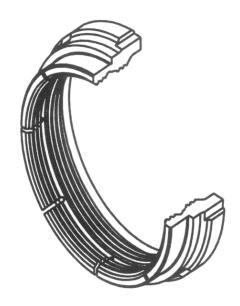
METRIC SIZES AVAILABLE ON REQUEST

UNLESS OTHERWISE SPECIFIED
INTERPRET DIMENSIONS & TOLERANCES PER
ANSI Y14.5M. ALL DIMENSIONS APPLY AFTER
PLATING AND PRIOR TO THE ADDITION OF SOLID
FILM LUBRICANT. 125 [3.2]
ALL SURFACES TOLERANCES
.XX .XXX
±.03 ±.010

ANGLES [X.X.] [X.X.X] ±2° ±[0.8] ±[0.25] DIMENSIONS IN [] ARE MILLIMETERS

SHUR-LOK COPORATION IRVINE, CALIFORNIA 92614 TELEPHONE: (714) 474-6000

SHUR-LOK


SHUR-LOK INTERNATIONAL, S.A. PETIT-RECHAIN, BELGUIM TELEPHONE: (32) 87-32.07.11

LOCKNUT – METALLIC, SELF LOCKING

SL 7610

SHEET 3 OF 3

SEGMENTED LOCK

FEATURES AND BENEFITS

- One piece design.
- Various wrenching options:
 - •Slots
 - •Holes
 - Hexagon
- High temperature capability (limited by material selected).
- Locking feature adaptable to various nut designs.
- ▶ 50 cycle reusability capable with proper plating and use of lubricants.
- Locking feature less sensitive to high seating torque.
- Comparatively higher axial load capability.

NOTATION

- May be affected by extreme RPM.
- Should not be used without a secondary lubricant.

THREAD SIZE

1.250 inch and larger.

Metric sizes available on request.

APPENDIX B INTERNATIONAL SPECIFICATIONS FOR STEELS

USA	FRANCE	EUR	OPE	GERMANY	GREAT	COMMERCIAL
		AECMA EN			BRITAIN	SPECIFICATION
TAINLESS STE	EELS					
303	ZI0CNF18.09			1.4305		
304	Z6CN18.09			1.4301		
(AISI 431) MIL-S-18732	Z15CN17-03 AIR9160	FE-PM 42	2136	1.4044	5S80	A.P.X.
	Z8CND17.04 AIR9160					A.P.X. 4
15-5 PH AMS 5659		FE-PM 64		1.4546		
17-4 PH AMS 5643	Z6CNU17-0 4 AIR9160	FE-PM 61		1.4548		X17U4
17-7 PH MIL-S-25043						
13-8 MO AMS 5629				1.4534		
		FE-PM 66	prEN 2506		2S 145	
A 286 AMS 5737 (Bars), AMS 5525(Tubes)	E-Z6NCT25 AIR9165	FE-PA 92 HT	prEN 2303 prEN 2304	1.4944 (Bars)	BSHR51 DTD 5076	
INCONEL 718 AMS 5662	NC19FeNb AIR9165	NI-P 100 HT	prEN 2404 prEN 2405	2.4668		
TRUCTURAL S	STEELS					
	30NCD16 AIR9160					
	E30NCD16 AIR9160					
(SAE 4135)	35CD4 AIR 9160	FE-PL 45		1.7220	708H37 ?	
	35NCD16 AIR9160					
	E35NCD16 AIR9160					
SAE 4140 MIL-S-5626	40CD4 AIR9160					
SAE4130 MIL-S-6758 (Bars) MLS-1872 9(Tubes)	25CD4S AIR9160	FE-PL 43S	2206	1.7214	S-142(Bars) S-534 (Tubes)	
SAE 4340 MIL-S-8844 AMS 6414	(40NCD7) AIR9160			1.6944	817M40? 3S99 ?	
ACHINING ST	TEELS					
				1.0737		9SMnPb36
				1.0726		35S20